Answer
Verified
428.4k+ views
Hint: Whenever current flows in a cable, it will generate a magnetic field according to Maxwell’s laws. This property of a material to generate a magnetic field when current flows through it is called electromagnetism.
Complete step-by-step answer: A current-carrying coil behaves likes a magnet when a current is passed through it. This property of conductors is called electromagnetism.
There are a number of factors that influence the strength of the magnetic field that will be generated by the current-carrying coil.
1) The number of turns directly affects the strength of the magnetic field that is generated. The higher the number of coils in the current-carrying coil, the higher the magnetic field.
2) The current flowing in the coil will also directly affect the magnetic field. The higher the current the more is the strength of the magnetic field and the lower the current the lower is the strength of the magnetic field.
3) The third factor is the kind of material that the wire is composed of. The less the resistance of the wire, the higher the current will flow in the circuit and the higher the magnetic field.
Hence, to increase the magnetic field, we can increase the number of turns of the wire in the coil.
Note: The formula of the magnetic field due to a circular coil at its centre is given as
$B = \dfrac{{{\mu _0}nI}}{{2R}}$ where $n$ is the number of turns, $I$ is the current, and $R$ is the radius of the circular coil. As we can see, if we increase the number of turns, the magnetic field will also increase.
Complete step-by-step answer: A current-carrying coil behaves likes a magnet when a current is passed through it. This property of conductors is called electromagnetism.
There are a number of factors that influence the strength of the magnetic field that will be generated by the current-carrying coil.
1) The number of turns directly affects the strength of the magnetic field that is generated. The higher the number of coils in the current-carrying coil, the higher the magnetic field.
2) The current flowing in the coil will also directly affect the magnetic field. The higher the current the more is the strength of the magnetic field and the lower the current the lower is the strength of the magnetic field.
3) The third factor is the kind of material that the wire is composed of. The less the resistance of the wire, the higher the current will flow in the circuit and the higher the magnetic field.
Hence, to increase the magnetic field, we can increase the number of turns of the wire in the coil.
Note: The formula of the magnetic field due to a circular coil at its centre is given as
$B = \dfrac{{{\mu _0}nI}}{{2R}}$ where $n$ is the number of turns, $I$ is the current, and $R$ is the radius of the circular coil. As we can see, if we increase the number of turns, the magnetic field will also increase.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE