
The strength of the magnetic field produced by a current-carrying circular coil can be done by _______ the number of turns of wire in the coil.
Answer
463.5k+ views
Hint: Whenever current flows in a cable, it will generate a magnetic field according to Maxwell’s laws. This property of a material to generate a magnetic field when current flows through it is called electromagnetism.
Complete step-by-step answer: A current-carrying coil behaves likes a magnet when a current is passed through it. This property of conductors is called electromagnetism.
There are a number of factors that influence the strength of the magnetic field that will be generated by the current-carrying coil.
1) The number of turns directly affects the strength of the magnetic field that is generated. The higher the number of coils in the current-carrying coil, the higher the magnetic field.
2) The current flowing in the coil will also directly affect the magnetic field. The higher the current the more is the strength of the magnetic field and the lower the current the lower is the strength of the magnetic field.
3) The third factor is the kind of material that the wire is composed of. The less the resistance of the wire, the higher the current will flow in the circuit and the higher the magnetic field.
Hence, to increase the magnetic field, we can increase the number of turns of the wire in the coil.
Note: The formula of the magnetic field due to a circular coil at its centre is given as
$B = \dfrac{{{\mu _0}nI}}{{2R}}$ where $n$ is the number of turns, $I$ is the current, and $R$ is the radius of the circular coil. As we can see, if we increase the number of turns, the magnetic field will also increase.
Complete step-by-step answer: A current-carrying coil behaves likes a magnet when a current is passed through it. This property of conductors is called electromagnetism.
There are a number of factors that influence the strength of the magnetic field that will be generated by the current-carrying coil.
1) The number of turns directly affects the strength of the magnetic field that is generated. The higher the number of coils in the current-carrying coil, the higher the magnetic field.
2) The current flowing in the coil will also directly affect the magnetic field. The higher the current the more is the strength of the magnetic field and the lower the current the lower is the strength of the magnetic field.
3) The third factor is the kind of material that the wire is composed of. The less the resistance of the wire, the higher the current will flow in the circuit and the higher the magnetic field.
Hence, to increase the magnetic field, we can increase the number of turns of the wire in the coil.
Note: The formula of the magnetic field due to a circular coil at its centre is given as
$B = \dfrac{{{\mu _0}nI}}{{2R}}$ where $n$ is the number of turns, $I$ is the current, and $R$ is the radius of the circular coil. As we can see, if we increase the number of turns, the magnetic field will also increase.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
