Answer
Verified
493.5k+ views
Hint: The sum of the binomial coefficient is ${2^n}$ and ${t_{r + 1}}$ is called a general term for all $r \in N$ and $0 \leqslant r \leqslant n$ . Using this formula, you can find any term of the expansion.
Complete step-by-step answer:
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Complete step-by-step answer:
Given that, the expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ and the sum of the binomial coefficient = 256.
We know that,
The sum of the binomial coefficient $ = {2^n} $, where n is the number of terms
$256 = {2^n}$
We have $256 = {2^8}$
${2^8} = {2^n}$
$8 = n$
Hence $n = 8$
Now, comparing the given expansion ${\left[ {2x + \dfrac{1}{x}} \right]^n}$ with the expansion ${\left( {a + b} \right)^n}$ and then we have
$a = 2x$ and $b = \dfrac{1}{x}$
The formula for general term for the expansion ${\left( {a + b} \right)^n}$ is given by
${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}.................(1),{\text{ for all }}r \in N{\text{ and }}0 \leqslant r \leqslant n$
Here, $a = 2x,{\text{ }}b = \dfrac{1}{x}{\text{ and }}n = 8$
Now put all the values in the equation (1), we get
${t_{r + 1}} = {}^8{C_r}{(2x)^{8 - r}}{\left( {\dfrac{1}{x}} \right)^r}$
The rearranging the terms by using the indices formulae, we get
${t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}\dfrac{1}{{{x^r}}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r}}{(x)^{ - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - r - r}}$
$\Rightarrow {t_{r + 1}} = {}^8{C_r}{(2)^{8 - r}}{\left( x \right)^{8 - 2r}}...........(2)$
To get the constant term that means the term independent of x, we must have
${x^{8 - 2r}} = {x^0}$
$\Rightarrow 8 - 2r = 0$
$\Rightarrow 2r = 8$
Dividing both sides by 2, we get
$r = 4$
The constant term in the equation (2) is given by
Constant term $ = {}^8{C_r}{(2)^{8 - r}}.............(3)$
Now put r = 4 in the equation (3), we get
Constant term $ = {}^8{C_4}{(2)^{8 - 4}}$
Constant term $ = {}^8{C_4}{(2)^4}$
We have
${2^4} = 16$
Constant term $ = 16 {}^8{C_4}..............(4)$
We know that the formula for combination, ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^8{C_4} = \dfrac{{8!}}{{4!(8 - 4)!}} = \dfrac{{8!}}{{4! \times 4!}} = \dfrac{{8 \times 7 \times 6 \times 5}}{{1 \times 2 \times 3 \times 4}} = \dfrac{{7 \times 2 \times 5}}{1} = 70$
Now put the value of ${}^8{C_2}$ in the equation (4), we get
Constant term $ = 16 \times 70$
Constant term in the given expansion $ = 1120$
Hence the correct option of the given question is option (a).
Note: The possibility for the mistake is that you might get confused for finding the constant term in the given expansion. The constant term in the given expansion that means to get the term independent of x.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE