Answer
Verified
444k+ views
Hint: We here have been asked about the sum of the interior angles of a triangle. For finding that, let us first know about a pentagon:
A pentagon is any five-sided polygon. Since it has 5 sides, its name has a prefix ‘pent’ and hence known as pentagon. A regular pentagon is shown as follows:
Now, to find the sum of all interior angles of a pentagon, we will use the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\] where ‘A’ is the sum of interior angles of a polygon with ‘n’ sides.
Complete step-by-step answer:
Now, we have to find the sum of the interior angles of a pentagon.
We know that the sum of interior angles ‘A’ of any polygon of sides ‘n’ is given by the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\]. Thus, we will use this formula to find the required sum.
We know that a pentagon has 5 sides. Thus, $n=5$.
Putting the value of ‘n’ in the formula, we get:
\[\begin{align}
& A=\left( n-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=\left( 5-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=3\times {{180}^{\circ }} \\
\end{align}\]
\[\Rightarrow A={{540}^{\circ }}\]
Thus, the sum of interior angles of a pentagon is ${{540}^{\circ }}$.
Now, let us find out the measure of each angle in a regular pentagon.
We can find it through the following method:
We will divide the sum of the measures of the angles by the number of sides of the polygon.
Sum of the measure of the angles of a pentagon=${{540}^{\circ }}$
No. of sides in a pentagon= 5
Thus, measure of one angle of a regular pentagon is give as:
$\begin{align}
& \dfrac{{{540}^{\circ }}}{5} \\
& \Rightarrow {{108}^{\circ }} \\
\end{align}$
Therefore, the measure of one angle of a regular pentagon is 108°.
We can verify it by multiplying 108° by 5.
\[108{}^\circ \times 5=540{}^\circ \]
But this can only be calculated if the polygon is regular, i.e. we can only find the measure of one angle of a pentagon if the pentagon is a regular one, i.e., all of its sides are of the equal length.
Thus, the required answer is ${{540}^{\circ }}$.
Note: We must know the sum of the interior angles of the basic polygons as they can come in handy.
1. TRIANGLE: The sum of the interior angles of a triangle is always 180°.
2. QUADRILATERAL: The sum of the interior angles of a quadrilateral is always 360°.
3. PENATGON: The sum of the interior angles of a pentagon is always 540°.
A pentagon is any five-sided polygon. Since it has 5 sides, its name has a prefix ‘pent’ and hence known as pentagon. A regular pentagon is shown as follows:
Now, to find the sum of all interior angles of a pentagon, we will use the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\] where ‘A’ is the sum of interior angles of a polygon with ‘n’ sides.
Complete step-by-step answer:
Now, we have to find the sum of the interior angles of a pentagon.
We know that the sum of interior angles ‘A’ of any polygon of sides ‘n’ is given by the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\]. Thus, we will use this formula to find the required sum.
We know that a pentagon has 5 sides. Thus, $n=5$.
Putting the value of ‘n’ in the formula, we get:
\[\begin{align}
& A=\left( n-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=\left( 5-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=3\times {{180}^{\circ }} \\
\end{align}\]
\[\Rightarrow A={{540}^{\circ }}\]
Thus, the sum of interior angles of a pentagon is ${{540}^{\circ }}$.
Now, let us find out the measure of each angle in a regular pentagon.
We can find it through the following method:
We will divide the sum of the measures of the angles by the number of sides of the polygon.
Sum of the measure of the angles of a pentagon=${{540}^{\circ }}$
No. of sides in a pentagon= 5
Thus, measure of one angle of a regular pentagon is give as:
$\begin{align}
& \dfrac{{{540}^{\circ }}}{5} \\
& \Rightarrow {{108}^{\circ }} \\
\end{align}$
Therefore, the measure of one angle of a regular pentagon is 108°.
We can verify it by multiplying 108° by 5.
\[108{}^\circ \times 5=540{}^\circ \]
But this can only be calculated if the polygon is regular, i.e. we can only find the measure of one angle of a pentagon if the pentagon is a regular one, i.e., all of its sides are of the equal length.
Thus, the required answer is ${{540}^{\circ }}$.
Note: We must know the sum of the interior angles of the basic polygons as they can come in handy.
1. TRIANGLE: The sum of the interior angles of a triangle is always 180°.
2. QUADRILATERAL: The sum of the interior angles of a quadrilateral is always 360°.
3. PENATGON: The sum of the interior angles of a pentagon is always 540°.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE