Answer
Verified
453.9k+ views
Hint: We here have been asked about the sum of the interior angles of a triangle. For finding that, let us first know about a pentagon:
A pentagon is any five-sided polygon. Since it has 5 sides, its name has a prefix ‘pent’ and hence known as pentagon. A regular pentagon is shown as follows:
Now, to find the sum of all interior angles of a pentagon, we will use the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\] where ‘A’ is the sum of interior angles of a polygon with ‘n’ sides.
Complete step-by-step answer:
Now, we have to find the sum of the interior angles of a pentagon.
We know that the sum of interior angles ‘A’ of any polygon of sides ‘n’ is given by the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\]. Thus, we will use this formula to find the required sum.
We know that a pentagon has 5 sides. Thus, $n=5$.
Putting the value of ‘n’ in the formula, we get:
\[\begin{align}
& A=\left( n-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=\left( 5-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=3\times {{180}^{\circ }} \\
\end{align}\]
\[\Rightarrow A={{540}^{\circ }}\]
Thus, the sum of interior angles of a pentagon is ${{540}^{\circ }}$.
Now, let us find out the measure of each angle in a regular pentagon.
We can find it through the following method:
We will divide the sum of the measures of the angles by the number of sides of the polygon.
Sum of the measure of the angles of a pentagon=${{540}^{\circ }}$
No. of sides in a pentagon= 5
Thus, measure of one angle of a regular pentagon is give as:
$\begin{align}
& \dfrac{{{540}^{\circ }}}{5} \\
& \Rightarrow {{108}^{\circ }} \\
\end{align}$
Therefore, the measure of one angle of a regular pentagon is 108°.
We can verify it by multiplying 108° by 5.
\[108{}^\circ \times 5=540{}^\circ \]
But this can only be calculated if the polygon is regular, i.e. we can only find the measure of one angle of a pentagon if the pentagon is a regular one, i.e., all of its sides are of the equal length.
Thus, the required answer is ${{540}^{\circ }}$.
Note: We must know the sum of the interior angles of the basic polygons as they can come in handy.
1. TRIANGLE: The sum of the interior angles of a triangle is always 180°.
2. QUADRILATERAL: The sum of the interior angles of a quadrilateral is always 360°.
3. PENATGON: The sum of the interior angles of a pentagon is always 540°.
A pentagon is any five-sided polygon. Since it has 5 sides, its name has a prefix ‘pent’ and hence known as pentagon. A regular pentagon is shown as follows:
Now, to find the sum of all interior angles of a pentagon, we will use the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\] where ‘A’ is the sum of interior angles of a polygon with ‘n’ sides.
Complete step-by-step answer:
Now, we have to find the sum of the interior angles of a pentagon.
We know that the sum of interior angles ‘A’ of any polygon of sides ‘n’ is given by the formula \[A=\left( n-2 \right)\times {{180}^{\circ }}\]. Thus, we will use this formula to find the required sum.
We know that a pentagon has 5 sides. Thus, $n=5$.
Putting the value of ‘n’ in the formula, we get:
\[\begin{align}
& A=\left( n-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=\left( 5-2 \right)\times {{180}^{\circ }} \\
& \Rightarrow A=3\times {{180}^{\circ }} \\
\end{align}\]
\[\Rightarrow A={{540}^{\circ }}\]
Thus, the sum of interior angles of a pentagon is ${{540}^{\circ }}$.
Now, let us find out the measure of each angle in a regular pentagon.
We can find it through the following method:
We will divide the sum of the measures of the angles by the number of sides of the polygon.
Sum of the measure of the angles of a pentagon=${{540}^{\circ }}$
No. of sides in a pentagon= 5
Thus, measure of one angle of a regular pentagon is give as:
$\begin{align}
& \dfrac{{{540}^{\circ }}}{5} \\
& \Rightarrow {{108}^{\circ }} \\
\end{align}$
Therefore, the measure of one angle of a regular pentagon is 108°.
We can verify it by multiplying 108° by 5.
\[108{}^\circ \times 5=540{}^\circ \]
But this can only be calculated if the polygon is regular, i.e. we can only find the measure of one angle of a pentagon if the pentagon is a regular one, i.e., all of its sides are of the equal length.
Thus, the required answer is ${{540}^{\circ }}$.
Note: We must know the sum of the interior angles of the basic polygons as they can come in handy.
1. TRIANGLE: The sum of the interior angles of a triangle is always 180°.
2. QUADRILATERAL: The sum of the interior angles of a quadrilateral is always 360°.
3. PENATGON: The sum of the interior angles of a pentagon is always 540°.
Recently Updated Pages
Two spheres of masses m and M are situated in air and class 9 physics CBSE
A girl is carrying a school bag of 3 kg mass on her class 9 science CBSE
A key of a mechanical piano struck gently and then class 9 physics CBSE
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Trending doubts
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The president of the constituent assembly was A Dr class 9 social science CBSE
What is the full form of pH?
Which is the largest butterfly in India A Andaman Crow class 9 social science CBSE
The largest brackish water lake in India is A Wular class 9 biology CBSE
What is chronic hunger and seasonal hunger