Answer
Verified
469.2k+ views
Hint: The total energy of the electron in its zero excited state is given. Now we have to find the energy of the electron in the hydrogen atom in its first excited state. After finding the energy of the electron in a hydrogen atom we need to find the Kinetic energy of that electron in the first excited state.
Complete answer:
The total energy of the electron in hydrogen atom in ground state is given as -13.6 eV,
That is,
E= -13.6 eV.
Now according to the question it is given that, what is the kinetic energy of the hydrogen atom in its first excited state, the energy that is given to us in the question is in ground state so in first excited state energy will be,
${{E}_{n}}=\dfrac{E}{{{\left( n+1 \right)}^{2}}}eV$
${{E}_{1}}=\dfrac{-13.6}{{{2}^{2}}}eV$ ,
${{E}_{1}}=-3.4eV$.
Now we know that,
K.E = |E|.
K.E = |-3.4 eV|
K.E = 3.4eV.
So, the correct answer is “Option C”.
Note:
In the last part of the answer we got the result of the energy for an electron in the first excited state as -3.4 eV but, the formula for the K.E had a modulus operator which means it will only show the magnitude irrespective of the sign. In the ground state the value of ‘n’ in the equation ${{E}_{n}}=\dfrac{E}{{{\left( n+1 \right)}^{2}}}eV$, but in the next case when it comes to the first excited state it became one so we can say n gradually increases with increase in the excited state.
Complete answer:
The total energy of the electron in hydrogen atom in ground state is given as -13.6 eV,
That is,
E= -13.6 eV.
Now according to the question it is given that, what is the kinetic energy of the hydrogen atom in its first excited state, the energy that is given to us in the question is in ground state so in first excited state energy will be,
${{E}_{n}}=\dfrac{E}{{{\left( n+1 \right)}^{2}}}eV$
${{E}_{1}}=\dfrac{-13.6}{{{2}^{2}}}eV$ ,
${{E}_{1}}=-3.4eV$.
Now we know that,
K.E = |E|.
K.E = |-3.4 eV|
K.E = 3.4eV.
So, the correct answer is “Option C”.
Note:
In the last part of the answer we got the result of the energy for an electron in the first excited state as -3.4 eV but, the formula for the K.E had a modulus operator which means it will only show the magnitude irrespective of the sign. In the ground state the value of ‘n’ in the equation ${{E}_{n}}=\dfrac{E}{{{\left( n+1 \right)}^{2}}}eV$, but in the next case when it comes to the first excited state it became one so we can say n gradually increases with increase in the excited state.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE