Answer
Verified
469.5k+ views
Hint: Start by simplifying the double cross product. You can use the formula, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]. And then use that if the two components of the box product is equal then, its value will be zero.
Complete step by step solution: We have, given, \[(\vec d + \vec a)[\vec a \times (\vec b \times (\vec c \times \vec d))]\]
\[ = (\vec d + \vec a)[\vec a \times (\vec b.\vec d)\vec c - (\vec b.\vec c)\vec d]\]
As, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]
Now, again doing cross product, with the\[\vec a\]we get,
\[ = (\vec d + \vec a)[(\vec b.\vec d)(\vec a \times \vec c) - (\vec b.\vec c)(\vec a \times \vec d)]\]
Next, we do dot product with \[\vec a\]and \[\vec d\] one by one,
\[ = (\vec b.\vec d)[\vec d.(\vec a \times \vec c) + \vec a.(\vec a \times \vec c)] - (\vec b.\vec c)[\vec d.(\vec a \times \vec d) + \vec a.(\vec a \times \vec d)]\]
\[ = (\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
As per the definition of the box product that can be written.
Box product is specified as, The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two.
Now, we also know if two elements of the box product are equal then its value turns out to be zero.
So, we have,
\[(\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
\[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
As, \[[\vec a\vec a\vec d]\]\[ = \]\[[\vec d\vec a\vec d]\]\[ = \]\[[\vec a\vec a\vec c]\]\[ = \]0 as they have two similar terms.
So, we have our answer as option a. \[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
Note: If in the box product two terms are equal then the value will be zero can be proved in this way,
We have,
\[[\vec a\vec b\vec c] = \vec a.(\vec b \times \vec c)\]
Now, if any two of them are equal, say \[\vec b = \vec c\]
Then,
\[[\vec a\vec b\vec b] = \vec a.(\vec b \times \vec b)\]
But now, the value of \[(\vec b \times \vec b)\]= 0, so we will have the value of the box product turn out to be zero.
Complete step by step solution: We have, given, \[(\vec d + \vec a)[\vec a \times (\vec b \times (\vec c \times \vec d))]\]
\[ = (\vec d + \vec a)[\vec a \times (\vec b.\vec d)\vec c - (\vec b.\vec c)\vec d]\]
As, \[\vec a \times (\vec b \times \vec c) = (\vec a.\vec c)\vec b - (\vec a.\vec b)\vec c\]
Now, again doing cross product, with the\[\vec a\]we get,
\[ = (\vec d + \vec a)[(\vec b.\vec d)(\vec a \times \vec c) - (\vec b.\vec c)(\vec a \times \vec d)]\]
Next, we do dot product with \[\vec a\]and \[\vec d\] one by one,
\[ = (\vec b.\vec d)[\vec d.(\vec a \times \vec c) + \vec a.(\vec a \times \vec c)] - (\vec b.\vec c)[\vec d.(\vec a \times \vec d) + \vec a.(\vec a \times \vec d)]\]
\[ = (\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
As per the definition of the box product that can be written.
Box product is specified as, The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two.
Now, we also know if two elements of the box product are equal then its value turns out to be zero.
So, we have,
\[(\vec b.\vec d)[[\vec d\vec a\vec c] + [\vec a\vec a\vec c] - (\vec b.\vec c)[[\vec d\vec a\vec d] + [\vec a\vec a\vec d]]\]
\[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
As, \[[\vec a\vec a\vec d]\]\[ = \]\[[\vec d\vec a\vec d]\]\[ = \]\[[\vec a\vec a\vec c]\]\[ = \]0 as they have two similar terms.
So, we have our answer as option a. \[ = (\vec b.\vec d)[\vec d\vec a\vec c]\]
Note: If in the box product two terms are equal then the value will be zero can be proved in this way,
We have,
\[[\vec a\vec b\vec c] = \vec a.(\vec b \times \vec c)\]
Now, if any two of them are equal, say \[\vec b = \vec c\]
Then,
\[[\vec a\vec b\vec b] = \vec a.(\vec b \times \vec b)\]
But now, the value of \[(\vec b \times \vec b)\]= 0, so we will have the value of the box product turn out to be zero.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers