
The value of $c$ from the lagrange’s mean value theorem for which \[\] in $\left[ {1,5} \right]$ is
A). 5
B). 1
C). $\sqrt {15} $
D). None of these
Answer
625.2k+ views
Hint- Here, we will be finding the required unknown by equating the value of $f'\left( c \right)$ obtained through differentiating the given function with that obtained with the help of lagrange’s mean value theorem.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Given function is $f\left( x \right) = \sqrt {25 - {x^2}} $
This function is continuous for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for all of these values.
Now let us differentiate the given function with respect to $x$, we get
$
f'\left( x \right) = \dfrac{{d\left[ {{{\left( {25 - {x^2}} \right)}^{\dfrac{1}{2}}}} \right]}}{{dx}} = \left( {\dfrac{1}{2}} \right){\left( {25 - {x^2}} \right)^{\dfrac{1}{2} - 1}}\left( { - 2x} \right) = - x{\left( {25 - {x^2}} \right)^{ - \dfrac{1}{2}}} \\
\Rightarrow f'\left( x \right) = - \dfrac{x}{{\sqrt {\left( {25 - {x^2}} \right)} }}{\text{ }} \to {\text{(1)}} \\
$
Clearly, the above function is also differentiable for all the values of $x \in \left[ {1,5} \right]$because the above function is defined for set of all these values.
So, according to lagrange’s mean value theorem if a function is continuous as well as differentiable for $x \in \left[ {a,b} \right]$, there exists $c \in \left[ {1,5} \right]$ such that $f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}$ .
$\therefore f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{5 - 1}} = \dfrac{{\sqrt {25 - {5^2}} - \sqrt {25 - {1^2}} }}{4} = \dfrac{{0 - \sqrt {24} }}{4} = - \dfrac{{\sqrt 6 }}{2}$
By using equation (1), we have
$f'\left( c \right) = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }} \Rightarrow - \dfrac{{\sqrt 6 }}{2} = - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}$
Squaring both sides, the above equation becomes
\[
\Rightarrow {\left( { - \dfrac{{\sqrt 6 }}{2}} \right)^2} = {\left( { - \dfrac{c}{{\sqrt {\left( {25 - {c^2}} \right)} }}} \right)^2} \Rightarrow \dfrac{6}{4} = \dfrac{{{c^2}}}{{\left( {25 - {c^2}} \right)}} \Rightarrow \dfrac{3}{2} = \dfrac{1}{{\left( {\dfrac{{25}}{{{c^2}}} - 1} \right)}} \Rightarrow \left( {\dfrac{{25}}{{{c^2}}} - 1} \right) = \dfrac{2}{3} \\
\Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{2}{3} + 1 \Rightarrow \left( {\dfrac{{25}}{{{c^2}}}} \right) = \dfrac{5}{3} \Rightarrow \left( {\dfrac{{{c^2}}}{{25}}} \right) = \dfrac{3}{5} \Rightarrow {c^2} = \dfrac{{3 \times 25}}{5} = 15 \\
\Rightarrow c = \sqrt {15} {\text{ }} \in \left[ {1,5} \right] \\
\\
\]
Therefore, the value of $c$ is \[\sqrt {15} {\text{ }}\].
Hence, option C is correct.
Note- In these types of problems where lagrange’s mean value theorem is used, at the end it is ensured that the value of $c$ obtained should lie in the interval of $x$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

