Answer
Verified
380.4k+ views
Hint: First of all we have to know what Lagrange's mean value theorem or LMVT. So, Lagrange’s mean value theorem or LMVT states that if a function $f(x)$ is continuous on a closed interval $[a,b]$ and differentiable on the open interval $\left( {a,b} \right)$, then there is at least one point $x = c$ on this interval, such that ,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
We are going to use this formula to find the value of $c$ for the given function.
Complete step by step answer:
Given, $f(x) = \sqrt {25 - {x^2}} $ in the interval $[1,5]$.
So, in the f=given interval, we can clearly see that $f(x)$ is continuous.
So, our first condition for Lagrange’s mean value theorem stands true.
Now, on differentiating $f(x)$ with respect to $x$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sqrt {25 - {x^2}} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}\left( { - {x^2}} \right)$
[Using chain rule]
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\left( { - 2x} \right)$
Now, by simplifying the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$
So, we can clearly observe that, $f'\left( x \right)$ is differentiable in $\left( {1,5} \right)$.
So, the second condition for Lagrange’s mean value theorem is also true.
Therefore, there must be a $c \in \left[ {1,5} \right]$ such that,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
Here, $b = 5$ and $a = 1$.
So, $f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{\left( {5 - 1} \right)}}$
Now, opening the functions, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - {{\left( 5 \right)}^2}} } \right\} - \left\{ {\sqrt {25 - {{\left( 1 \right)}^2}} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - 25} } \right\} - \left\{ {\sqrt {25 - 1} } \right\}}}{{\left( 4 \right)}}$
Simplifying the equation, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{0 - \left\{ {\sqrt {24} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - 2\sqrt 6 }}{4}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - \sqrt 6 }}{2}$
But, we know, $f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$.
Therefore, $f'\left( c \right) = \dfrac{{ - c}}{{\sqrt {25 - {c^2}} }}$
So, $\dfrac{{ - c}}{{\sqrt {25 - {c^2}} }} = \dfrac{{ - \sqrt 6 }}{2}$
Now, squaring both sides, we get,
$ \Rightarrow \dfrac{{{c^2}}}{{25 - {c^2}}} = \dfrac{6}{4}$
Cross multiplying the above equation, we get,
$ \Rightarrow 4{c^2} = 6\left( {25 - {c^2}} \right)$
$ \Rightarrow 4{c^2} = 150 - 6{c^2}$
Adding $6{c^2}$ on both sides, we get,
$ \Rightarrow 10{c^2} = 150$
$ \Rightarrow {c^2} = 15$
Now, square rooting both sides, we get,
$ \Rightarrow c = \pm \sqrt {15} $
Therefore, $c = \sqrt {15} \in \left[ {1,5} \right]$. Hence, the correct option is (C).
Note:
There are many important applications of Lagrange’s mean value theorem. It plays an important role in the proof of Fundamental Theorem of Calculus. The generalisation of the Lagrange’s mean value theorem can be used to prove L’Hopital’s Rule. Mean value theorem is important in other areas of mathematics other than calculus and analysis, like applied mathematics and even number theory.
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
We are going to use this formula to find the value of $c$ for the given function.
Complete step by step answer:
Given, $f(x) = \sqrt {25 - {x^2}} $ in the interval $[1,5]$.
So, in the f=given interval, we can clearly see that $f(x)$ is continuous.
So, our first condition for Lagrange’s mean value theorem stands true.
Now, on differentiating $f(x)$ with respect to $x$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {\sqrt {25 - {x^2}} } \right)$
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}\left( { - {x^2}} \right)$
[Using chain rule]
$ \Rightarrow f'\left( x \right) = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\left( { - 2x} \right)$
Now, by simplifying the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$
So, we can clearly observe that, $f'\left( x \right)$ is differentiable in $\left( {1,5} \right)$.
So, the second condition for Lagrange’s mean value theorem is also true.
Therefore, there must be a $c \in \left[ {1,5} \right]$ such that,
$f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{\left( {b - a} \right)}}$
Here, $b = 5$ and $a = 1$.
So, $f'\left( c \right) = \dfrac{{f\left( 5 \right) - f\left( 1 \right)}}{{\left( {5 - 1} \right)}}$
Now, opening the functions, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - {{\left( 5 \right)}^2}} } \right\} - \left\{ {\sqrt {25 - {{\left( 1 \right)}^2}} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{\left\{ {\sqrt {25 - 25} } \right\} - \left\{ {\sqrt {25 - 1} } \right\}}}{{\left( 4 \right)}}$
Simplifying the equation, we get,
$ \Rightarrow f'\left( c \right) = \dfrac{{0 - \left\{ {\sqrt {24} } \right\}}}{{\left( 4 \right)}}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - 2\sqrt 6 }}{4}$
$ \Rightarrow f'\left( c \right) = \dfrac{{ - \sqrt 6 }}{2}$
But, we know, $f'\left( x \right) = \dfrac{{ - x}}{{\sqrt {25 - {x^2}} }}$.
Therefore, $f'\left( c \right) = \dfrac{{ - c}}{{\sqrt {25 - {c^2}} }}$
So, $\dfrac{{ - c}}{{\sqrt {25 - {c^2}} }} = \dfrac{{ - \sqrt 6 }}{2}$
Now, squaring both sides, we get,
$ \Rightarrow \dfrac{{{c^2}}}{{25 - {c^2}}} = \dfrac{6}{4}$
Cross multiplying the above equation, we get,
$ \Rightarrow 4{c^2} = 6\left( {25 - {c^2}} \right)$
$ \Rightarrow 4{c^2} = 150 - 6{c^2}$
Adding $6{c^2}$ on both sides, we get,
$ \Rightarrow 10{c^2} = 150$
$ \Rightarrow {c^2} = 15$
Now, square rooting both sides, we get,
$ \Rightarrow c = \pm \sqrt {15} $
Therefore, $c = \sqrt {15} \in \left[ {1,5} \right]$. Hence, the correct option is (C).
Note:
There are many important applications of Lagrange’s mean value theorem. It plays an important role in the proof of Fundamental Theorem of Calculus. The generalisation of the Lagrange’s mean value theorem can be used to prove L’Hopital’s Rule. Mean value theorem is important in other areas of mathematics other than calculus and analysis, like applied mathematics and even number theory.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths