Answer
Verified
462.6k+ views
Hint: Solve the denominator and numerator separately to avoid the complex calculations. Then put their respective simplified values of denominator and numerator in the given expression.
Rule of division for dividing rational expressions: $\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \left( {\dfrac{a}{b}} \right) \times \left( {\dfrac{c}{d}} \right)$
Use this rule and then cancel the common terms to get the answer.
Complete step-by-step answer:
Step-1
Let $\dfrac{{\left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)}}{{\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)}} = \dfrac{A}{B}$ … $\left( 1 \right)$
$ \Rightarrow A = \left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)$ and $B = \left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)$
Solve the value of A and B separately.
Step-2
Solve for A
$ \Rightarrow A = \left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)$
Simplify the terms in brackets by taking LCM
On simplifying
$ \Rightarrow A = \left( {\dfrac{{{x^2} - {y^2}}}{{xy}}} \right)\left( {\dfrac{{{y^2} - {z^2}}}{{zy}}} \right)\left( {\dfrac{{{z^2} - {x^2}}}{{xz}}} \right)$
Multiply the terms of denominator
$ \Rightarrow A = \dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}$
Step-3
Now solve for B
$B = \left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)$
Simplify the terms in brackets by taking LCM
On simplifying we get
$ \Rightarrow B = \left( {\dfrac{{{y^2} - {x^2}}}{{{x^2}{y^2}}}} \right)\left( {\dfrac{{{z^2} - {y^2}}}{{{y^2}{z^2}}}} \right)\left( {\dfrac{{{x^2} - {z^2}}}{{{z^2}{x^2}}}} \right)$
Now Multiply the terms of denominator
\[ \Rightarrow B = \dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{{x^4}{y^4}{z^4}}}\]
Step- 4
Now from the step-2 and step-3 substitute the value of $A$and $B$ in $\left( 1 \right)$
We get the whole expression as
$\dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{{x^4}{y^4}{z^4}}}}}$
We can rewrite the above expression as
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{\left( {{x^2}{y^2}{z^2}} \right)\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
Take the – sign common from the numerator of $B$(make the expression of $B$similar to $A$) in order to cancel the common terms
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{ - \left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{\left( {{x^2}{y^2}{z^2}} \right)\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
Now cancel the common terms
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{1}{1}}}{{\dfrac{{ - 1}}{{\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
\[ \Rightarrow \dfrac{A}{B} = \dfrac{1}{{\dfrac{{ - 1}}{{\left( {{x^2}{y^2}{z^2}} \right)}}}}\] $\because \dfrac{1}{1} = 1$ … $\left( 2 \right)$
Rule of division for dividing rational expressions: $\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \left( {\dfrac{a}{b}} \right) \times \left( {\dfrac{c}{d}} \right)$
By using above mentioned rule, $\left( 2 \right)$becomes
\[ \Rightarrow \dfrac{A}{B} = - \left( {{x^2}{y^2}{z^2}} \right)\]
\[ \Rightarrow \dfrac{A}{B} = - {x^2}{y^2}{z^2}\]
Hence the value of $\dfrac{{\left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)}}{{\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)}}$ is \[ - {x^2}{y^2}{z^2}\]
Hence, Option(A) is the correct answer.
Note: Do not solve the whole fraction together. In these types of questions, solve the numerator and denominator part separately. while solving the parts(i.e. denominator and numerator) observe the question and do not multiply or solve the terms which may cancel later on. By doing so you can save your time as well as complexity of the question.
Rule of division for dividing rational expressions: $\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \left( {\dfrac{a}{b}} \right) \times \left( {\dfrac{c}{d}} \right)$
Use this rule and then cancel the common terms to get the answer.
Complete step-by-step answer:
Step-1
Let $\dfrac{{\left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)}}{{\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)}} = \dfrac{A}{B}$ … $\left( 1 \right)$
$ \Rightarrow A = \left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)$ and $B = \left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)$
Solve the value of A and B separately.
Step-2
Solve for A
$ \Rightarrow A = \left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)$
Simplify the terms in brackets by taking LCM
On simplifying
$ \Rightarrow A = \left( {\dfrac{{{x^2} - {y^2}}}{{xy}}} \right)\left( {\dfrac{{{y^2} - {z^2}}}{{zy}}} \right)\left( {\dfrac{{{z^2} - {x^2}}}{{xz}}} \right)$
Multiply the terms of denominator
$ \Rightarrow A = \dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}$
Step-3
Now solve for B
$B = \left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)$
Simplify the terms in brackets by taking LCM
On simplifying we get
$ \Rightarrow B = \left( {\dfrac{{{y^2} - {x^2}}}{{{x^2}{y^2}}}} \right)\left( {\dfrac{{{z^2} - {y^2}}}{{{y^2}{z^2}}}} \right)\left( {\dfrac{{{x^2} - {z^2}}}{{{z^2}{x^2}}}} \right)$
Now Multiply the terms of denominator
\[ \Rightarrow B = \dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{{x^4}{y^4}{z^4}}}\]
Step- 4
Now from the step-2 and step-3 substitute the value of $A$and $B$ in $\left( 1 \right)$
We get the whole expression as
$\dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{{x^4}{y^4}{z^4}}}}}$
We can rewrite the above expression as
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{\left( {{y^2} - {x^2}} \right)\left( {{z^2} - {y^2}} \right)\left( {{x^2} - {z^2}} \right)}}{{\left( {{x^2}{y^2}{z^2}} \right)\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
Take the – sign common from the numerator of $B$(make the expression of $B$similar to $A$) in order to cancel the common terms
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{{\left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{{x^2}{y^2}{z^2}}}}}{{\dfrac{{ - \left( {{x^2} - {y^2}} \right)\left( {{y^2} - {z^2}} \right)\left( {{z^2} - {x^2}} \right)}}{{\left( {{x^2}{y^2}{z^2}} \right)\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
Now cancel the common terms
\[ \Rightarrow \dfrac{A}{B} = \dfrac{{\dfrac{1}{1}}}{{\dfrac{{ - 1}}{{\left( {{x^2}{y^2}{z^2}} \right)}}}}\]
\[ \Rightarrow \dfrac{A}{B} = \dfrac{1}{{\dfrac{{ - 1}}{{\left( {{x^2}{y^2}{z^2}} \right)}}}}\] $\because \dfrac{1}{1} = 1$ … $\left( 2 \right)$
Rule of division for dividing rational expressions: $\dfrac{{\left( {\dfrac{a}{b}} \right)}}{{\left( {\dfrac{c}{d}} \right)}} = \left( {\dfrac{a}{b}} \right) \times \left( {\dfrac{c}{d}} \right)$
By using above mentioned rule, $\left( 2 \right)$becomes
\[ \Rightarrow \dfrac{A}{B} = - \left( {{x^2}{y^2}{z^2}} \right)\]
\[ \Rightarrow \dfrac{A}{B} = - {x^2}{y^2}{z^2}\]
Hence the value of $\dfrac{{\left( {\dfrac{x}{y} - \dfrac{y}{x}} \right)\left( {\dfrac{y}{z} - \dfrac{z}{y}} \right)\left( {\dfrac{z}{x} - \dfrac{x}{z}} \right)}}{{\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{y^2}}}} \right)\left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{{{z^2}}}} \right)\left( {\dfrac{1}{{{z^2}}} - \dfrac{1}{{{x^2}}}} \right)}}$ is \[ - {x^2}{y^2}{z^2}\]
Hence, Option(A) is the correct answer.
Note: Do not solve the whole fraction together. In these types of questions, solve the numerator and denominator part separately. while solving the parts(i.e. denominator and numerator) observe the question and do not multiply or solve the terms which may cancel later on. By doing so you can save your time as well as complexity of the question.
Recently Updated Pages
A key of a mechanical piano struck gently and then class 9 physics CBSE
Two spheres of masses m and M are situated in air and class 9 physics CBSE
A girl is carrying a school bag of 3 kg mass on her class 9 science CBSE
Locus of all the points in a plane on which the moment class 11 phy sec 1 JEE_Main
A pulley is hinged at the centre and a massless thread class 11 physics JEE_Main
If sin x + cos x 12 then sin4x + cos4x as a rational class 10 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE