
The value of $f\left( x \right) = {x^x}$ has stationary point at?
$
a.{\text{ }}x = e \\
b.{\text{ }}x = \dfrac{1}{e} \\
c.{\text{ }}x = 1 \\
d.{\text{ }}x = \sqrt e \\
$
Answer
624k+ views
Hint: - Use $\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$, to find out the stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

