Answer
Verified
503.7k+ views
Hint: - Use $\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$, to find out the stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
To find out the stationary point differentiate the given function w.r.t the given variable and put that to zero.
$\therefore \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = 0$
So first simplify the function take log on both sides
$\therefore \log f\left( x \right) = \log {x^x}$
As we know $\log {a^b} = b\log a$ so, apply this property of logarithmic
$\therefore \log f\left( x \right) = x\log x$
Now differentiate above equation w.r.t.$x$
As we know differentiation of$\dfrac{d}{{dx}}\log f\left( x \right) = \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right)$, and in $x\log x$we use chain rule of differentiation.
$
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{d}{{dx}}x\log x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}x \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = \dfrac{x}{x} + \log x\left( 1 \right) \\
\therefore \dfrac{1}{{f\left( x \right)}}\left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = 1 + \log x \\
\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = f\left( x \right)\left( {1 + \log x} \right) \\
$
Now substitute the value of $f\left( x \right) = {x^x}$in the above equation
$\therefore \left( {\dfrac{d}{{dx}}f\left( x \right)} \right) = {x^x}\left( {1 + \log x} \right)$
Now according to stationary point condition equate this value to zero.
$
\therefore {x^x}\left( {1 + \log x} \right) = 0 \\
\therefore \left( {1 + \log x} \right) = 0 \\
\therefore \log x = - 1 \\
$
Now take antilog
$\therefore x = {e^{ - 1}} = \dfrac{1}{e}$
So, the stationary point of the function $f\left( x \right) = {x^x}$is at $x = \dfrac{1}{e}$
Hence, option (b) is correct.
Note: - In such types of questions the key concept we have to remember is that always remember the condition of stationary point which is stated above, so differentiate the following function w.r.t. $x$ and equate the value to zero, then solve for $x$, which is the required stationary point.
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE