Answer
Verified
469.5k+ views
Hint: Work function is inverse to the wavelength. If the work function increases, wavelength decreases, and if the work function decreases, the wavelength increases.
Formula used:
$E = h\nu $
Where, $E$=energy required to eject an electron,
$h$=planck’s constant which is equal to $6.626 \times {10^{ - 34}}{m^2}kg{s^{ - 1}}$,
$\nu $=frequency
Complete step by step solution:
Here we have to find the metals which can produce the radiation of wavelength $4100A^{\circ}$. There are $3$ metals $A, B$ and $C$. The work function of the metals $A, B$ and $C$ are $1.92eV, 2.0eV$, and $5eV$ respectively. Let’s find the wavelength of the three metals. $E = h\nu $ Here we have to find the wavelength. So, converting the formula into $E = \dfrac{{hc}}{\lambda }$. Now we can apply the known values.
$E = \dfrac{{hc}}{\lambda }$
We have a work function; we have to find the wavelength. So keeping the wavelength on one side, and other known values on another side.
$\lambda = \dfrac{{hc}}{E}$
Now the formula is ready to apply.
(i)To find the wavelength of metal $A$:
The work function for the metal $A$=$1.92eV$\[ \to 1.92 \times 1.6 \times {10^{ - 19}}V\]. As $e$ is the charge of an electron.
$\lambda = \dfrac{{hc}}{E}$
On substituting the corresponding values,
$\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.92 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{6.626 \times 3}}{{1.92 \times 1.6}} \times {10^{ - 34 + 8 + 19}}$
$\Rightarrow \lambda = \dfrac{{19.878}}{{3.072}} \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 6.470 \times {10^{ - 7}}$
This shows that metal $A$ can emit photoelectrons of wavelength $4100A^{\circ}$. As the wavelength of metal $A$ is greater than the required wavelength.
(ii)To find the wavelength of metal $B$:
$E = \dfrac{{hc}}{\lambda }$
On substituting the corresponding values,
$\Rightarrow E = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{2.0 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{19.878}}{{3.2}} \times {10^{ - 7}}$
$\Rightarrow \lambda = 6.211 \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 6211A^{\circ}$
From the wavelength of metal $B$, it can emit the photoelectrons of wavelength greater than $4100A^ {\circ}$. As it has a wavelength greater than the required wavelength.
(iii)To find the wavelength of metal $C$:
$\lambda = \dfrac{{hc}}{\lambda }$
On substituting the corresponding values,
$\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{5 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{19.878}}{8} \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 2.484 \times {10^{ - 7}}$
$\Rightarrow \lambda = 2484A^{\circ}$
From the wavelength of metal $C$, it cannot emit photoelectrons of the wavelength of $4100A^{\circ}$. As it can produce wavelength up to $2484A^{\circ}$.
$\therefore$ Metals A and B can emit radiation of wavelength $4100A^{\circ}$. Hence, the correct answer is option (C).
Note:
When the electromagnetic radiation of frequency more than the threshold frequency, the photoelectric effect occurs. The minimum energy required to eject an electron from the metal surface is called the work function in the photoelectric effect.
Formula used:
$E = h\nu $
Where, $E$=energy required to eject an electron,
$h$=planck’s constant which is equal to $6.626 \times {10^{ - 34}}{m^2}kg{s^{ - 1}}$,
$\nu $=frequency
Complete step by step solution:
Here we have to find the metals which can produce the radiation of wavelength $4100A^{\circ}$. There are $3$ metals $A, B$ and $C$. The work function of the metals $A, B$ and $C$ are $1.92eV, 2.0eV$, and $5eV$ respectively. Let’s find the wavelength of the three metals. $E = h\nu $ Here we have to find the wavelength. So, converting the formula into $E = \dfrac{{hc}}{\lambda }$. Now we can apply the known values.
$E = \dfrac{{hc}}{\lambda }$
We have a work function; we have to find the wavelength. So keeping the wavelength on one side, and other known values on another side.
$\lambda = \dfrac{{hc}}{E}$
Now the formula is ready to apply.
(i)To find the wavelength of metal $A$:
The work function for the metal $A$=$1.92eV$\[ \to 1.92 \times 1.6 \times {10^{ - 19}}V\]. As $e$ is the charge of an electron.
$\lambda = \dfrac{{hc}}{E}$
On substituting the corresponding values,
$\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.92 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{6.626 \times 3}}{{1.92 \times 1.6}} \times {10^{ - 34 + 8 + 19}}$
$\Rightarrow \lambda = \dfrac{{19.878}}{{3.072}} \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 6.470 \times {10^{ - 7}}$
This shows that metal $A$ can emit photoelectrons of wavelength $4100A^{\circ}$. As the wavelength of metal $A$ is greater than the required wavelength.
(ii)To find the wavelength of metal $B$:
$E = \dfrac{{hc}}{\lambda }$
On substituting the corresponding values,
$\Rightarrow E = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{2.0 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{19.878}}{{3.2}} \times {10^{ - 7}}$
$\Rightarrow \lambda = 6.211 \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 6211A^{\circ}$
From the wavelength of metal $B$, it can emit the photoelectrons of wavelength greater than $4100A^ {\circ}$. As it has a wavelength greater than the required wavelength.
(iii)To find the wavelength of metal $C$:
$\lambda = \dfrac{{hc}}{\lambda }$
On substituting the corresponding values,
$\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{5 \times 1.6 \times {{10}^{ - 19}}}}$
On simplifying the above equation, we get
$\Rightarrow \lambda = \dfrac{{19.878}}{8} \times {10^{ - 7}}$
On further simplification,
$\Rightarrow \lambda = 2.484 \times {10^{ - 7}}$
$\Rightarrow \lambda = 2484A^{\circ}$
From the wavelength of metal $C$, it cannot emit photoelectrons of the wavelength of $4100A^{\circ}$. As it can produce wavelength up to $2484A^{\circ}$.
$\therefore$ Metals A and B can emit radiation of wavelength $4100A^{\circ}$. Hence, the correct answer is option (C).
Note:
When the electromagnetic radiation of frequency more than the threshold frequency, the photoelectric effect occurs. The minimum energy required to eject an electron from the metal surface is called the work function in the photoelectric effect.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE