Answer
Verified
469.2k+ views
Hint: For an infinitely charged plane sheet, electric field is given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$ .
The total electric field at point ‘$P$’ will be the vector sum of the electric field due to all the three infinitely charged sheets.
Complete answer:
As given in the question, three infinitely charged sheets are kept parallel to x-plane or are kept at $z=0, z=2a$, and $z=3a.$
For an infinite sheet of charge, the electric field will be perpendicular to the surface and given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$. This formula is derived by the Gauss Law which states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.
Now, the direction of the electric field depends on the sign of surface charged density $\sigma $ and the location of the point $P$. If $\sigma $ is positive then the direction will be towards point $P$.
Let us suppose an upward direction to be positive.
So, the electric field due to the sheet at $z=0$, ${E_{ - \sigma }} = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Similarly, the electric field due to the sheet at $z=2a$, ${E_{ - 2\sigma }} = - \dfrac{{2\sigma }}{{2{\varepsilon _0}}}$.
And, the electric field due to the sheet at $z=3a$, ${E_\sigma } = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Now, the total electric field due to the sheets at point P is given by, ${E_P} = {E_{ - \sigma }} + {E_{ - 2\sigma }} + {E_\sigma }$ as a vector sum.
So, ${E_P} = - \dfrac{\sigma }{{2{\varepsilon _0}}} - \dfrac{{2\sigma }}{{2{\varepsilon _0}}} - \dfrac{\sigma }{{2{\varepsilon _0}}}$
On simplification we have, ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$
Here (–) sign represents the downward or opposite of $\hat k$.
$\therefore$ The the value of electric field at 'P' is ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$. Hence, the correct option is (C).
Note:
The electric field is a vector quantity. So, carefully determine the direction of the field. Remember that the direction of the electric field depends on the sign of surface charge density $\sigma $ and the location of the point P. If $\sigma $ is positive then the direction will be towards point $P$ and if it is negative then the direction will be away from point $P$.
The total electric field at point ‘$P$’ will be the vector sum of the electric field due to all the three infinitely charged sheets.
Complete answer:
As given in the question, three infinitely charged sheets are kept parallel to x-plane or are kept at $z=0, z=2a$, and $z=3a.$
For an infinite sheet of charge, the electric field will be perpendicular to the surface and given by $E = \dfrac{\sigma }{{2{\varepsilon _0}}}$. This formula is derived by the Gauss Law which states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.
Now, the direction of the electric field depends on the sign of surface charged density $\sigma $ and the location of the point $P$. If $\sigma $ is positive then the direction will be towards point $P$.
Let us suppose an upward direction to be positive.
So, the electric field due to the sheet at $z=0$, ${E_{ - \sigma }} = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Similarly, the electric field due to the sheet at $z=2a$, ${E_{ - 2\sigma }} = - \dfrac{{2\sigma }}{{2{\varepsilon _0}}}$.
And, the electric field due to the sheet at $z=3a$, ${E_\sigma } = - \dfrac{\sigma }{{2{\varepsilon _0}}}$
Now, the total electric field due to the sheets at point P is given by, ${E_P} = {E_{ - \sigma }} + {E_{ - 2\sigma }} + {E_\sigma }$ as a vector sum.
So, ${E_P} = - \dfrac{\sigma }{{2{\varepsilon _0}}} - \dfrac{{2\sigma }}{{2{\varepsilon _0}}} - \dfrac{\sigma }{{2{\varepsilon _0}}}$
On simplification we have, ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$
Here (–) sign represents the downward or opposite of $\hat k$.
$\therefore$ The the value of electric field at 'P' is ${E_P} = - \dfrac{{2\sigma }}{{{\varepsilon _0}}}$. Hence, the correct option is (C).
Note:
The electric field is a vector quantity. So, carefully determine the direction of the field. Remember that the direction of the electric field depends on the sign of surface charge density $\sigma $ and the location of the point P. If $\sigma $ is positive then the direction will be towards point $P$ and if it is negative then the direction will be away from point $P$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE