
Three men paint a house in 20 days. How many days 30 men take to do the same?
(a) 3
(b) 2
(c) 60
(d) 12
Answer
518.4k+ views
Hint: We first try to form the proportionality equation for the variables. We take an arbitrary constant. We use the given values of the variables to find the value of the constant. Finally, we put the constant’s value to find the equation.
Complete step-by-step solution:
We have been given the relation between two variables where we assume number of men as r and number of days as t.
The inversely proportional number is actually directly proportional to the inverse of the given number. The relation between r and t is inverse relation.
It’s given r varies inversely as t which gives $r\propto \dfrac{1}{t}$.
To get rid of the proportionality we use the proportionality constant which gives $r=\dfrac{k}{t} \Rightarrow rt=k$.
Here, the number k is the proportionality constant. It’s given $r=3$ when $t=20$.
We put the values in the equation $rt=k$ to find the value of k.
So, $3\times 20=k$. Simplifying we get \[3\times 20=k=60\].
Therefore, the equation becomes with the value of k as $rt=60$.
Now we simplify the equation to get the value of t for number of men being 30
\[\begin{align}
& 30t=60 \\
& \Rightarrow t=\dfrac{60}{30}=2 \\
\end{align}\]
Therefore, the number of days required to complete the work is 2.
Note: In a direct proportion, the ratio between matching quantities stays the same if they are divided. They form equivalent fractions. In an indirect (or inverse) proportion, as one quantity increases, the other decreases. In an inverse proportion, the product of the matching quantities stays the same.
Complete step-by-step solution:
We have been given the relation between two variables where we assume number of men as r and number of days as t.
The inversely proportional number is actually directly proportional to the inverse of the given number. The relation between r and t is inverse relation.
It’s given r varies inversely as t which gives $r\propto \dfrac{1}{t}$.
To get rid of the proportionality we use the proportionality constant which gives $r=\dfrac{k}{t} \Rightarrow rt=k$.
Here, the number k is the proportionality constant. It’s given $r=3$ when $t=20$.
We put the values in the equation $rt=k$ to find the value of k.
So, $3\times 20=k$. Simplifying we get \[3\times 20=k=60\].
Therefore, the equation becomes with the value of k as $rt=60$.
Now we simplify the equation to get the value of t for number of men being 30
\[\begin{align}
& 30t=60 \\
& \Rightarrow t=\dfrac{60}{30}=2 \\
\end{align}\]
Therefore, the number of days required to complete the work is 2.
Note: In a direct proportion, the ratio between matching quantities stays the same if they are divided. They form equivalent fractions. In an indirect (or inverse) proportion, as one quantity increases, the other decreases. In an inverse proportion, the product of the matching quantities stays the same.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE


