Answer
Verified
449.7k+ views
Hint: For a reversible reaction shown by the general reaction,
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
$\text{ aA + bB }\rightleftharpoons \text{ cC + dD }$
The Nernst equation is written in terms of the equilibrium constant is written below,
$\text{ }{{\text{E}}_{\text{cell}}}\text{= }\dfrac{\text{RT}}{\text{nF}}\text{ln}\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$
Where $\text{ K = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}}\text{ }$ and K is an equilibrium constant for a reaction, R is gas constant, T is absolute temperature, n is the number of electrons in redox reaction and F is faraday's constant.
Complete step by step solution:
The nearest equation can be written in terms of equilibrium constant .It is given as follows,
$\text{ E}_{\text{cell}}^{\text{0}}\text{ = }\dfrac{\text{RT}}{\text{nF}}\text{ln K }$ (1)
Where $\text{ E}_{\text{cell}}^{\text{0}}\text{ }$ is a cell constant, R is gas constant, T is absolute temperature, n is the number of electrons involved in a redox reaction, F is faraday's constant and k is the equilibrium constant of the reaction.
We have given that silver from silver nitrate undergoes a reduction reaction. The reduction potential for the reaction is,
$\text{ A}{{\text{g}}^{\text{+}}}\text{ + }{{\text{e}}^{-}}\text{ }\to \text{ Ag E}_{\text{red}}^{\text{0}}=0.8\text{ V }$
Similarly, glucose (aldehyde) forms gluconic acid. the reduction potential for the oxidation reaction of glucose to gluconic acid is as shown below,
$\text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{6}}}\text{ + }{{\text{H}}_{\text{2}}}\text{O }\to \text{ }{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{12}}}{{\text{O}}_{\text{7}}}\text{(Gluconic acid) + 2}{{\text{H}}^{\text{+}}}\text{ + 2}{{\text{e}}^{-}}\text{ ; E}_{\text{red}}^{\text{o}}\text{ = }-\text{0}\text{.05 V }$
Thus cell potential $\text{ E}_{\text{Cell}}^{\text{0}}\text{ }$ is the difference in reduction potential of reduction reaction and oxidation reaction. Thus standard electrode potential is determined as,
$\text{ E}_{\text{Cell}}^{\text{0}}\text{ }=\text{ }{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Red}}}+{{\left( \text{E}_{\text{red}}^{\text{0}} \right)}_{\text{Ox}}}\text{ = 0}\text{.8 }-0.05\text{ = 0}\text{.75 V }$
Therefore electrode standard potential is equal to $\text{ 0}\text{.75 V }$ .
Substitute values in the equation (1) we have,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{nF}}\text{ln K = 2}\text{.302 }\dfrac{\text{RT}}{\text{nF}}\text{log K }$ (2)
We are requested to use $\text{ 2}\text{.302 }\!\!\times\!\!\text{ }\dfrac{\text{RT}}{\text{F}}\text{ = 0}\text{.0592 }$ and $\text{ }\dfrac{\text{F}}{\text{RT}}\text{=38}\text{.92 }$ . Let's substitute all value given in the equation (2) we get the following relation,
$\text{ 0}\text{.75 = }\dfrac{\text{RT}}{\text{2}\times \text{F}}\text{ ln K = }\dfrac{1}{2}\times \dfrac{0.0592}{2.303}\ln \text{ K }$
Rearrange above equation with respect to the natural logarithmic value of equilibrium constant K is given as,
$\text{ ln K = }\dfrac{\left( 0.75 \right)\left( 2\times 2.303 \right)}{0.0592}\text{ = 58}\text{.38 }$
Thus the correct answer of the ln K value is $\text{ 58}\text{.38 }$ .
Hence, (B) is the correct option.
Note: Note that, for electrochemical reaction value of equilibrium constant K is very large.it indicates that electrochemical reactions are more favoured towards the product. Remember that the negative value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$ means that the cell under study is not feasible or not possible. Thus the value of $\text{ }{{\text{E}}_{\text{cell}}}\text{ }$is used to determine whether the cell is spontaneous or not.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers