Answer
Verified
450.9k+ views
Hint: Electric field intensity at a given point is given by
$E=\dfrac{Kq}{{{r}^{2}}}$
Where \[q\] be given as charges given at the question and r is the distance between them. This sum of electric field should be zero to get the distance between the smaller charge and the point which intensity is zero.
Complete step-by-step answer:
First of all let us take a look at what electric field intensity is. Each and every particle with an electric charge makes a space around it in which electric force is experienced. This space is called the electric field. If a unit test charge is kept in this electric field, then it will experience the force emitted by the source. The quantity of force felt by charged particles with unit charge if it is placed in the electric field is called Electric field intensity.
In this question, ${{q}_{1}}$ = $2\mu C$ and \[{{q}_{2}}\] = $-50\mu C$ are the charges and let x be the distance between smallest charge and point at which intensity is zero. It is mentioned that both charges are opposite in charge. In this case the point at which electric field intensity is zero lies outside. Therefore electric field due to smaller charge + electric field due to higher charge will be zero. Substituting the values,
$k\left( \dfrac{2}{{{x}^{2}}} \right)+k\left( \dfrac{-50}{{{\left( 80+x \right)}^{2}}} \right)=0$
Hence
$k\left( \dfrac{2}{{{x}^{2}}} \right)=k\left( \dfrac{50}{{{\left( 80+x \right)}^{2}}} \right)$
k and 2 are common so let’s cancel it
$\left( \dfrac{1}{{{x}^{2}}} \right)=\left( \dfrac{25}{{{\left( 80+x \right)}^{2}}} \right)$
$5x=\left( 80+x \right)$
Therefore
$x=\dfrac{80}{5-1}=20cm$
The distance between the smaller charge and the point at which intensity is zero is 20 cm.
Note: As the electric field is a vector quantity, the direction should be taken into consideration when we calculate the total sum of the electric field intensity. The magnitude of the electric field intensity will not be negative, but the direction can be negative. This should be kept in mind while solving the question.
$E=\dfrac{Kq}{{{r}^{2}}}$
Where \[q\] be given as charges given at the question and r is the distance between them. This sum of electric field should be zero to get the distance between the smaller charge and the point which intensity is zero.
Complete step-by-step answer:
First of all let us take a look at what electric field intensity is. Each and every particle with an electric charge makes a space around it in which electric force is experienced. This space is called the electric field. If a unit test charge is kept in this electric field, then it will experience the force emitted by the source. The quantity of force felt by charged particles with unit charge if it is placed in the electric field is called Electric field intensity.
In this question, ${{q}_{1}}$ = $2\mu C$ and \[{{q}_{2}}\] = $-50\mu C$ are the charges and let x be the distance between smallest charge and point at which intensity is zero. It is mentioned that both charges are opposite in charge. In this case the point at which electric field intensity is zero lies outside. Therefore electric field due to smaller charge + electric field due to higher charge will be zero. Substituting the values,
$k\left( \dfrac{2}{{{x}^{2}}} \right)+k\left( \dfrac{-50}{{{\left( 80+x \right)}^{2}}} \right)=0$
Hence
$k\left( \dfrac{2}{{{x}^{2}}} \right)=k\left( \dfrac{50}{{{\left( 80+x \right)}^{2}}} \right)$
k and 2 are common so let’s cancel it
$\left( \dfrac{1}{{{x}^{2}}} \right)=\left( \dfrac{25}{{{\left( 80+x \right)}^{2}}} \right)$
$5x=\left( 80+x \right)$
Therefore
$x=\dfrac{80}{5-1}=20cm$
The distance between the smaller charge and the point at which intensity is zero is 20 cm.
Note: As the electric field is a vector quantity, the direction should be taken into consideration when we calculate the total sum of the electric field intensity. The magnitude of the electric field intensity will not be negative, but the direction can be negative. This should be kept in mind while solving the question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE