Two circles of equal radii $ r $ cuts orthogonally. If their centres are $ \left( {2,3} \right) $ and $ \left( {5,6} \right) $ then $ r $ =
A. $ 1 $
B. $ 2 $
C. $ 3 $
D. $ 4 $
Answer
Verified
463.2k+ views
Hint: Since the two circles cut orthogonally it follows the formula that sum of the square of the first radius and square of the second radius is equal to the square of the distance between the centres of the circle. Use the property that the radius is equal for both circles.
Complete step-by-step answer:
Given that the circles cut orthogonally.
Given that the radius of the circles are equal.
Given the centres of the circles are $ \left( {2,3} \right) $ and $ \left( {5,6} \right) $ .
Now if the two circles are orthogonal to each other then the tangent of the first circle at the intersection point of the circle touches the other circle. So the tangents of the two circles form the right angled triangle where the base is the radius of one circle and height is the radius of the other circle and hypotenuse is equal to the distance between the centres of the circles.
Since the triangle is right angle triangle it follows Pythagoras theorem,
$ \Rightarrow {\left( {base} \right)^2} + {\left( {height} \right)^2} = {\left( {hyp} \right)^2} $ ……(1)
Let us consider base as $ {r_1} $ .and height as $ {r_2} $ .
So after substituting (1) we get,
$ \Rightarrow {r_1}^2 + {r_2}^2 = {\left( {hyp} \right)^2} $ ……(2)
We know the radius is equal then we will take $ {r_1} = {r_2} = r $ .
On substitute the value in (2) we get,
$ \Rightarrow 2{r^2} = {\left( {hyp} \right)^2} $ ……(3)
The hypotenuse is equal to the distance of the two centres.
To find the distance between two points as $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ .
We know the distance between the two points is,
$ \Rightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
The distance between $ \left( {2,3} \right) $ and $ \left( {5,6} \right) $ is,
$
\Rightarrow \sqrt {{{\left( {2 - 5} \right)}^2} + {{\left( {3 - 6} \right)}^2}} = \sqrt {{3^2} + {3^2}} \\
= 3\sqrt 2
$
Hence, the hypotenuse is $ 3\sqrt 2 $ .
Then on substitute the values in (3) we get,
$
\Rightarrow 2{r^2} = {\left( {3\sqrt 2 } \right)^2}\\
\Rightarrow 2{r^2} = 9 \times 2\\
\Rightarrow\Rightarrow {r^2} = 9\\
\Rightarrow r = \pm 3
$
Hence, we get the value of radius as $ r = 3 $ .
Therefore, the radius of the circle is $ 3 $ .
So, the correct answer is “ $ 3 $ ”.
Note: Here, in this problem we have taken radius as $ 3 $ instead of -3 because the radius of the circle will never be negative. The triangle formed is right angled only when the circle is orthogonal but in other cases it differs.
Complete step-by-step answer:
Given that the circles cut orthogonally.
Given that the radius of the circles are equal.
Given the centres of the circles are $ \left( {2,3} \right) $ and $ \left( {5,6} \right) $ .
Now if the two circles are orthogonal to each other then the tangent of the first circle at the intersection point of the circle touches the other circle. So the tangents of the two circles form the right angled triangle where the base is the radius of one circle and height is the radius of the other circle and hypotenuse is equal to the distance between the centres of the circles.
Since the triangle is right angle triangle it follows Pythagoras theorem,
$ \Rightarrow {\left( {base} \right)^2} + {\left( {height} \right)^2} = {\left( {hyp} \right)^2} $ ……(1)
Let us consider base as $ {r_1} $ .and height as $ {r_2} $ .
So after substituting (1) we get,
$ \Rightarrow {r_1}^2 + {r_2}^2 = {\left( {hyp} \right)^2} $ ……(2)
We know the radius is equal then we will take $ {r_1} = {r_2} = r $ .
On substitute the value in (2) we get,
$ \Rightarrow 2{r^2} = {\left( {hyp} \right)^2} $ ……(3)
The hypotenuse is equal to the distance of the two centres.
To find the distance between two points as $ \left( {{x_1},{y_1}} \right) $ and $ \left( {{x_2},{y_2}} \right) $ .
We know the distance between the two points is,
$ \Rightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} $
The distance between $ \left( {2,3} \right) $ and $ \left( {5,6} \right) $ is,
$
\Rightarrow \sqrt {{{\left( {2 - 5} \right)}^2} + {{\left( {3 - 6} \right)}^2}} = \sqrt {{3^2} + {3^2}} \\
= 3\sqrt 2
$
Hence, the hypotenuse is $ 3\sqrt 2 $ .
Then on substitute the values in (3) we get,
$
\Rightarrow 2{r^2} = {\left( {3\sqrt 2 } \right)^2}\\
\Rightarrow 2{r^2} = 9 \times 2\\
\Rightarrow\Rightarrow {r^2} = 9\\
\Rightarrow r = \pm 3
$
Hence, we get the value of radius as $ r = 3 $ .
Therefore, the radius of the circle is $ 3 $ .
So, the correct answer is “ $ 3 $ ”.
Note: Here, in this problem we have taken radius as $ 3 $ instead of -3 because the radius of the circle will never be negative. The triangle formed is right angled only when the circle is orthogonal but in other cases it differs.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.