Answer
Verified
453.6k+ views
Hint: We can calculate the fraction of volume filled by each water pipe in $ 9\dfrac{3}{8} $ hours, sum of which will be equal to 1 denotry full tank.
The value of the variable can be found to get the required time.
Complete step-by-step answer:
Let time taken by a smaller tap to fill the tank completely is t hrs, then volume filled in one hour = $ \dfrac{1}{t}. $
It is given, the smaller tank takes 10 hours less. Therefore, time taken to fill the tank completely is (t-10) hours.
Volume filled in 1 hr = $ \dfrac{1}{{t - 10}} $
Time taken by both taps $ = 9\dfrac{3}{8} $ hours
$ = \dfrac{{9 \times 8 + 3}}{8} $
(Converting to improper fraction)
$ = \dfrac{{75}}{8}{\text{hrs}} $
Tank filled by each tap in $ \dfrac{{75}}{8}{\text{ hours}} $
Smaller tap $ = \dfrac{1}{t} \times \dfrac{{75}}{8} $
$ = \dfrac{{75}}{{8t}} $
Larger tap $ = \dfrac{1}{{\left( {t - 10} \right)}} \times \dfrac{{75}}{8} $
$ = \dfrac{{75}}{{8\left( {t - 10} \right)}} $
Sum of tanks filled by each pipe =1
Where 1 denotes completely full tank:
$ \dfrac{{75}}{{8t}} + \dfrac{{75}}{{8\left( {t - 10} \right)}} = 1 $
$ \dfrac{{75}}{8}\left( {\dfrac{1}{t} + \dfrac{1}{{\left( {t - 10} \right)}}} \right) = 1 $
$ \dfrac{1}{t} + \dfrac{1}{{\left( {t - 10} \right)}} = \dfrac{8}{{75}} $
Taking LCM:
$ \dfrac{{t - 10 + t}}{{t(t - 10)}} = \dfrac{8}{{75}} $
\[\dfrac{{2t - 10}}{{{t^2} - 10t}} = \dfrac{8}{{75}}\]
$ (2t - 10)75 = 8({t^2} - 10t) $
$ 150t - 750 = 8{t^2} - 80t $
Rearranging:
$ 8{t^2} - 230t - 750 = 0 $
Finding roots of this quadratic equation using
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Here, a = 8, b=-230, c = -750, x =t.
Substituting, we get:
$ t = \dfrac{{ - ( - 230) \pm \sqrt {{{( - 230)}^2} - (4 \times 8 \times - 750)} }}{{2 \times 8}} $
$ t = \dfrac{{230 \pm \sqrt {28900} }}{{16}} $
$ t = \dfrac{{230 \pm 170}}{{16}} $
It will be divided into two cases:
$ t = \dfrac{{230 + 170}}{{16}} $ $ t = \dfrac{{230 - 170}}{{16}} $
$ t = \dfrac{{400}}{{16}} $ $ t = \dfrac{{60}}{{16}} $
$ t = 25 $ $ t = \dfrac{{15}}{4} $
When t =25
Time taken by smaller tank = 25 hrs
Time taken by larger tank = 25-10 = 15 hrs
When $ t = \dfrac{{15}}{4} $
Time taken by smaller tank \[ = {\text{ }}\dfrac{{15}}{4}{\text{ }}hrs\]
Time taken by larger tank \[ = {\text{ }}\dfrac{{15}}{4} - 10{\text{ hrs}} = {\text{ }}\dfrac{{ - 25}}{4}{\text{ }}hrs\]
Time can never be negative, hence this is wrong.
Therefore, time taken by the smaller water tap to fill separately one complete tank is 25 hours and the larger tank is 15 hours.
Note: We do not use improper fractions while solving the questions and hence they are converted to mixed fractions first.Whole fraction values are taken as 1, as here, we have taken 1 for a completely filled tank.
The value of the variable can be found to get the required time.
Complete step-by-step answer:
Let time taken by a smaller tap to fill the tank completely is t hrs, then volume filled in one hour = $ \dfrac{1}{t}. $
It is given, the smaller tank takes 10 hours less. Therefore, time taken to fill the tank completely is (t-10) hours.
Volume filled in 1 hr = $ \dfrac{1}{{t - 10}} $
Time taken by both taps $ = 9\dfrac{3}{8} $ hours
$ = \dfrac{{9 \times 8 + 3}}{8} $
(Converting to improper fraction)
$ = \dfrac{{75}}{8}{\text{hrs}} $
Tank filled by each tap in $ \dfrac{{75}}{8}{\text{ hours}} $
Smaller tap $ = \dfrac{1}{t} \times \dfrac{{75}}{8} $
$ = \dfrac{{75}}{{8t}} $
Larger tap $ = \dfrac{1}{{\left( {t - 10} \right)}} \times \dfrac{{75}}{8} $
$ = \dfrac{{75}}{{8\left( {t - 10} \right)}} $
Sum of tanks filled by each pipe =1
Where 1 denotes completely full tank:
$ \dfrac{{75}}{{8t}} + \dfrac{{75}}{{8\left( {t - 10} \right)}} = 1 $
$ \dfrac{{75}}{8}\left( {\dfrac{1}{t} + \dfrac{1}{{\left( {t - 10} \right)}}} \right) = 1 $
$ \dfrac{1}{t} + \dfrac{1}{{\left( {t - 10} \right)}} = \dfrac{8}{{75}} $
Taking LCM:
$ \dfrac{{t - 10 + t}}{{t(t - 10)}} = \dfrac{8}{{75}} $
\[\dfrac{{2t - 10}}{{{t^2} - 10t}} = \dfrac{8}{{75}}\]
$ (2t - 10)75 = 8({t^2} - 10t) $
$ 150t - 750 = 8{t^2} - 80t $
Rearranging:
$ 8{t^2} - 230t - 750 = 0 $
Finding roots of this quadratic equation using
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
Here, a = 8, b=-230, c = -750, x =t.
Substituting, we get:
$ t = \dfrac{{ - ( - 230) \pm \sqrt {{{( - 230)}^2} - (4 \times 8 \times - 750)} }}{{2 \times 8}} $
$ t = \dfrac{{230 \pm \sqrt {28900} }}{{16}} $
$ t = \dfrac{{230 \pm 170}}{{16}} $
It will be divided into two cases:
$ t = \dfrac{{230 + 170}}{{16}} $ $ t = \dfrac{{230 - 170}}{{16}} $
$ t = \dfrac{{400}}{{16}} $ $ t = \dfrac{{60}}{{16}} $
$ t = 25 $ $ t = \dfrac{{15}}{4} $
When t =25
Time taken by smaller tank = 25 hrs
Time taken by larger tank = 25-10 = 15 hrs
When $ t = \dfrac{{15}}{4} $
Time taken by smaller tank \[ = {\text{ }}\dfrac{{15}}{4}{\text{ }}hrs\]
Time taken by larger tank \[ = {\text{ }}\dfrac{{15}}{4} - 10{\text{ hrs}} = {\text{ }}\dfrac{{ - 25}}{4}{\text{ }}hrs\]
Time can never be negative, hence this is wrong.
Therefore, time taken by the smaller water tap to fill separately one complete tank is 25 hours and the larger tank is 15 hours.
Note: We do not use improper fractions while solving the questions and hence they are converted to mixed fractions first.Whole fraction values are taken as 1, as here, we have taken 1 for a completely filled tank.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE