Answer
Verified
387.1k+ views
Hint: This problem can be solved by making use of the fact that when unpolarized light passes through a polarizer, its intensity becomes half. This comes from Malus' law which gives the relation between the intensity of transmitted light and incident light when passing through a polarizer based upon the alignment of the transmission axis of the polarizer polarizer and the polarization direction of light.
Formula used:
The intensity of emergent light $I$ after passing through a polarizer is given by,
$I={{I}_{0}}{{\cos }^{2}}\theta $ (Malus' law)
where ${{I}_{0}}$ is the intensity of the light before entering the polarizer and $\theta $ is the angle made by the transmission axis of the polarizer with the direction of polarization of the light.
Complete step by step answer:
When unpolarized or polarized light passes through a polarizer kept suitably, its intensity decreases, as the polarizer only allows a certain component of the light to pass through which has the same direction of polarization as its transmission axis.
The relation between the incident intensity and the emergent intensity of the light is given by Mallus’ law.
The intensity of emergent light $I$ after passing through a polarizer is given by,
$I={{I}_{0}}{{\cos }^{2}}\theta $ (Malus' law) --(1)
where ${{I}_{0}}$ is the intensity of the light before entering the polarizer and $\theta $ is the angle made by the transmission axis of the polarizer with the direction of polarization of the light.
Now, let us analyze the question.
Let the initial intensity of the unpolarized light be ${{I}_{0}}=32W.{{m}^{-2}}$.
Now, since the light is unpolarized, it can be said that it has no direction of polarization. There is a component of the light in all directions. Hence, it can be said that half of the light has some component along the transmission axis $\left( \theta =0,\cos \theta =1.{{\cos }^{2}}\theta =1 \right)$ while the other half has no component along the transmission axis (or in essence, it only has component perpendicular to the transmission axis $\left( \theta ={{90}^{0}},\cos \theta =0,{{\cos }^{2}}\theta =0 \right)$.
Hence, from this explanation and using (1), we get the intensity of light $\left( I \right)$ coming out from the polarizer as
$I=\dfrac{1}{2}{{I}_{0}}{{\cos }^{2}}{{0}^{0}}+\dfrac{1}{2}{{I}_{0}}{{\cos }^{2}}{{90}^{0}}$
$\therefore I=\dfrac{1}{2}{{I}_{0}}{{\left( 1 \right)}^{2}}+\dfrac{1}{2}{{I}_{0}}{{\left( 0 \right)}^{2}}=\dfrac{1}{2}{{I}_{0}}+0=\dfrac{1}{2}{{I}_{0}}$ [$\left( \theta =0,\cos \theta =1.{{\cos }^{2}}\theta =1 \right)$,$\left( \theta ={{90}^{0}},\cos \theta =0,{{\cos }^{2}}\theta =0 \right)$]
$\therefore I=\dfrac{{{I}_{0}}}{2}=\dfrac{32}{2}=16W.{{m}^{-2}}$
Hence, the intensity of the light coming out from the first polarizer will be $16W.{{m}^{-2}}$.
Hence, the correct option is B) $16W.{{m}^{-2}}$.
Note: This problem could also have been solved by making use of the fact that when unpolarized light passes through a polarizer, its intensity becomes halved. We arrived at this specific result by using and explaining Malus' Law. This is the more general approach and can be used for finding out the intensity of light coming out from any polarizer. Since the question required the intensity of the light coming out from the first polarizer only, we could have solved using the idea of unpolarized light intensity becoming halved after going through a polarizer.
Formula used:
The intensity of emergent light $I$ after passing through a polarizer is given by,
$I={{I}_{0}}{{\cos }^{2}}\theta $ (Malus' law)
where ${{I}_{0}}$ is the intensity of the light before entering the polarizer and $\theta $ is the angle made by the transmission axis of the polarizer with the direction of polarization of the light.
Complete step by step answer:
When unpolarized or polarized light passes through a polarizer kept suitably, its intensity decreases, as the polarizer only allows a certain component of the light to pass through which has the same direction of polarization as its transmission axis.
The relation between the incident intensity and the emergent intensity of the light is given by Mallus’ law.
The intensity of emergent light $I$ after passing through a polarizer is given by,
$I={{I}_{0}}{{\cos }^{2}}\theta $ (Malus' law) --(1)
where ${{I}_{0}}$ is the intensity of the light before entering the polarizer and $\theta $ is the angle made by the transmission axis of the polarizer with the direction of polarization of the light.
Now, let us analyze the question.
Let the initial intensity of the unpolarized light be ${{I}_{0}}=32W.{{m}^{-2}}$.
Now, since the light is unpolarized, it can be said that it has no direction of polarization. There is a component of the light in all directions. Hence, it can be said that half of the light has some component along the transmission axis $\left( \theta =0,\cos \theta =1.{{\cos }^{2}}\theta =1 \right)$ while the other half has no component along the transmission axis (or in essence, it only has component perpendicular to the transmission axis $\left( \theta ={{90}^{0}},\cos \theta =0,{{\cos }^{2}}\theta =0 \right)$.
Hence, from this explanation and using (1), we get the intensity of light $\left( I \right)$ coming out from the polarizer as
$I=\dfrac{1}{2}{{I}_{0}}{{\cos }^{2}}{{0}^{0}}+\dfrac{1}{2}{{I}_{0}}{{\cos }^{2}}{{90}^{0}}$
$\therefore I=\dfrac{1}{2}{{I}_{0}}{{\left( 1 \right)}^{2}}+\dfrac{1}{2}{{I}_{0}}{{\left( 0 \right)}^{2}}=\dfrac{1}{2}{{I}_{0}}+0=\dfrac{1}{2}{{I}_{0}}$ [$\left( \theta =0,\cos \theta =1.{{\cos }^{2}}\theta =1 \right)$,$\left( \theta ={{90}^{0}},\cos \theta =0,{{\cos }^{2}}\theta =0 \right)$]
$\therefore I=\dfrac{{{I}_{0}}}{2}=\dfrac{32}{2}=16W.{{m}^{-2}}$
Hence, the intensity of the light coming out from the first polarizer will be $16W.{{m}^{-2}}$.
Hence, the correct option is B) $16W.{{m}^{-2}}$.
Note: This problem could also have been solved by making use of the fact that when unpolarized light passes through a polarizer, its intensity becomes halved. We arrived at this specific result by using and explaining Malus' Law. This is the more general approach and can be used for finding out the intensity of light coming out from any polarizer. Since the question required the intensity of the light coming out from the first polarizer only, we could have solved using the idea of unpolarized light intensity becoming halved after going through a polarizer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE