How do you use dimensional analysis to figure out how many seconds are in 4 years?
Answer
Verified
442.8k+ views
Hint: We are given 4 years, we are asked to find numbers of seconds are there in it and we have to do it by dimensional analysis, to do so we will learn what does a dimensional analysis means that we will learn how are 4 year and the seconds can be related, we will use that 1 year is same as 365 days then we use 1 day is same as 24 hours then we use that 1 hour is same as 60 minutes and lastly we use that 1 minute is same as 60 seconds so we will combine all these dimension to find the number of seconds in 4 years.
Complete step by step answer:
We are given 4 years; we have to change it into the number of seconds.
Before this we will learn what dimensional analysis meant,
Now dimensional analysis also known as unit factor method is a problem solving method that uses the fact that any number or expression can be multiplied by one without changing its value. It is a great technique to change the dimension of one quantity, quantity remains the same but just the dimension will get changed.
For example: we know 1 meter has 100 centimeter
So, $1m=1cm$ , the quantity is the same , just the dimension is different.
Now, we are given that we have 4 years, that is we have time in a year, we have to find the equivalent time in the seconds.
To do so we will learn how the different dimensions of the time related things are connected.
1 year = 365 days …………………………………… (1)
In 1 day = 24 hours ………………………………… (2)
1 hour = 60 minutes ………………………………. (3)
1 minute = 60 seconds ………………………….. (4)
We have to start from this year and reach it in seconds.
So, now –
$4\text{years}=4\times 1$
From eq (1) we get –
$1=\dfrac{365\text{days}}{1\text{year}}$
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}$
From eq (2), we get –
$1=\dfrac{24\text{hours}}{1\text{day}}$
So, $4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hours}}{1\text{day}}$
Now from eq (3) we get –
$1=\dfrac{60\text{minutes}}{1\text{hour}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}$
From eq (4), we get –
$1=\dfrac{60\text{seconds}}{1\text{minutes}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}\times \dfrac{60\text{seconds}}{1\text{minute}}$
Now we cancel like terms, we get –
$=4\times 365\times 24\times 60\times 60\text{seconds}$
By simplifying, we get –
$4\text{year=12614400seconds}$
Note: Remember that we need to be careful while multiplying as when we change a big unit to the small then it will get a little larger to calculate. So error may arise also we cannot skip any in between units, we always need to change the term unit by unit. It is widely used in chemistry to change the number of atoms to mole or change large units into small ones.
Complete step by step answer:
We are given 4 years; we have to change it into the number of seconds.
Before this we will learn what dimensional analysis meant,
Now dimensional analysis also known as unit factor method is a problem solving method that uses the fact that any number or expression can be multiplied by one without changing its value. It is a great technique to change the dimension of one quantity, quantity remains the same but just the dimension will get changed.
For example: we know 1 meter has 100 centimeter
So, $1m=1cm$ , the quantity is the same , just the dimension is different.
Now, we are given that we have 4 years, that is we have time in a year, we have to find the equivalent time in the seconds.
To do so we will learn how the different dimensions of the time related things are connected.
1 year = 365 days …………………………………… (1)
In 1 day = 24 hours ………………………………… (2)
1 hour = 60 minutes ………………………………. (3)
1 minute = 60 seconds ………………………….. (4)
We have to start from this year and reach it in seconds.
So, now –
$4\text{years}=4\times 1$
From eq (1) we get –
$1=\dfrac{365\text{days}}{1\text{year}}$
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}$
From eq (2), we get –
$1=\dfrac{24\text{hours}}{1\text{day}}$
So, $4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hours}}{1\text{day}}$
Now from eq (3) we get –
$1=\dfrac{60\text{minutes}}{1\text{hour}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}$
From eq (4), we get –
$1=\dfrac{60\text{seconds}}{1\text{minutes}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}\times \dfrac{60\text{seconds}}{1\text{minute}}$
Now we cancel like terms, we get –
$=4\times 365\times 24\times 60\times 60\text{seconds}$
By simplifying, we get –
$4\text{year=12614400seconds}$
Note: Remember that we need to be careful while multiplying as when we change a big unit to the small then it will get a little larger to calculate. So error may arise also we cannot skip any in between units, we always need to change the term unit by unit. It is widely used in chemistry to change the number of atoms to mole or change large units into small ones.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.