Answer
Verified
351.6k+ views
Hint: To simplify \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\] using the reference angle, we will find the value of given angles step by step. Using the concept of reference angle, we will write
\[\sin {210^ \circ } = \sin ({180^ \circ } + {30^ \circ })\],
\[\cos {330^ \circ } = \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right)\] and
\[\tan {135^ \circ } = \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right)\].
Then using the value of standard angles, we will find the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\].
Complete step by step answer:
According to the question, using the reference angles we have to find the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\]. As we know, the reference angle is the acute angle with the x-axis. Thus, one by one we have to find the value of \[\sin {210^ \circ }\], \[\cos {330^ \circ }\] and \[\tan {135^ \circ }\] using the reference angle.
Let us consider the original angle given by \[\theta \] and the auxiliary value is given by \[\alpha \].
For the first quadrant, we have \[\theta = \alpha \].
For the second quadrant, we have \[\theta = {180^ \circ } - \alpha \].
For the third quadrant, we have \[\theta = {180^ \circ } + \alpha \].
For the fourth quadrant, we have \[\theta = {360^ \circ } - \alpha \].
Consider \[\sin {210^ \circ }\]. \[{210^ \circ }\] is in the third quadrant.
Therefore, \[\sin {210^ \circ } = \sin ({180^ \circ } + \alpha )\] i.e., \[\sin {210^ \circ } = \sin ({180^ \circ } + {30^ \circ })\]
In the third quadrant, \[\sin \] is negative.
So,
\[ \Rightarrow \sin ({180^ \circ } + {30^ \circ }) = - \sin {30^ \circ }\]
\[\therefore \sin ({210^ \circ }) = - \dfrac{1}{2}\]
Now, consider \[\cos {330^ \circ }\]. \[{330^ \circ }\] lies in the fourth quadrant.
Therefore, \[\cos {330^ \circ } = \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right)\].
In the fourth quadrant, \[\cos \] is positive.
So,
\[ \Rightarrow \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right) = \cos {30^ \circ }\]
\[\therefore \cos \left( {{{330}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Now, consider \[\tan {135^ \circ }\]. \[{135^ \circ }\] lies in the second quadrant.
Therefore, \[\tan {135^ \circ } = \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right)\].
In the second quadrant, \[\tan \] is negative.
So,
\[ \Rightarrow \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right) = - \tan {45^ \circ }\]
\[\therefore \tan {135^ \circ } = - 1\]
Putting the values in \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\], we get
\[ \Rightarrow \sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ } = \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ } = 1 - \dfrac{{\sqrt 3 }}{4}\]
Therefore, the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\] is \[\left( {1 - \dfrac{{\sqrt 3 }}{4}} \right)\].
Note:
In the first quadrant, all trigonometric functions are positive. In the second quadrant, \[\sin \] and \[\cos ec\] are positive. In the third quadrant, \[\tan \] and \[\cot \] are positive. In the fourth quadrant, \[\cos \] and \[\sec \] are positive. Also, note that here we have used values of some standard angles i.e., \[\sin {30^ \circ } = \dfrac{1}{2}\], \[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\tan {45^ \circ } = 1\].
\[\sin {210^ \circ } = \sin ({180^ \circ } + {30^ \circ })\],
\[\cos {330^ \circ } = \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right)\] and
\[\tan {135^ \circ } = \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right)\].
Then using the value of standard angles, we will find the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\].
Complete step by step answer:
According to the question, using the reference angles we have to find the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\]. As we know, the reference angle is the acute angle with the x-axis. Thus, one by one we have to find the value of \[\sin {210^ \circ }\], \[\cos {330^ \circ }\] and \[\tan {135^ \circ }\] using the reference angle.
Let us consider the original angle given by \[\theta \] and the auxiliary value is given by \[\alpha \].
For the first quadrant, we have \[\theta = \alpha \].
For the second quadrant, we have \[\theta = {180^ \circ } - \alpha \].
For the third quadrant, we have \[\theta = {180^ \circ } + \alpha \].
For the fourth quadrant, we have \[\theta = {360^ \circ } - \alpha \].
Consider \[\sin {210^ \circ }\]. \[{210^ \circ }\] is in the third quadrant.
Therefore, \[\sin {210^ \circ } = \sin ({180^ \circ } + \alpha )\] i.e., \[\sin {210^ \circ } = \sin ({180^ \circ } + {30^ \circ })\]
In the third quadrant, \[\sin \] is negative.
So,
\[ \Rightarrow \sin ({180^ \circ } + {30^ \circ }) = - \sin {30^ \circ }\]
\[\therefore \sin ({210^ \circ }) = - \dfrac{1}{2}\]
Now, consider \[\cos {330^ \circ }\]. \[{330^ \circ }\] lies in the fourth quadrant.
Therefore, \[\cos {330^ \circ } = \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right)\].
In the fourth quadrant, \[\cos \] is positive.
So,
\[ \Rightarrow \cos \left( {{{360}^ \circ } - {{30}^ \circ }} \right) = \cos {30^ \circ }\]
\[\therefore \cos \left( {{{330}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Now, consider \[\tan {135^ \circ }\]. \[{135^ \circ }\] lies in the second quadrant.
Therefore, \[\tan {135^ \circ } = \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right)\].
In the second quadrant, \[\tan \] is negative.
So,
\[ \Rightarrow \tan \left( {{{180}^ \circ } - {{45}^ \circ }} \right) = - \tan {45^ \circ }\]
\[\therefore \tan {135^ \circ } = - 1\]
Putting the values in \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\], we get
\[ \Rightarrow \sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ } = \left( { - \dfrac{1}{2}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( { - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ } = 1 - \dfrac{{\sqrt 3 }}{4}\]
Therefore, the value of \[\sin {210^ \circ }\cos {330^ \circ } - \tan {135^ \circ }\] is \[\left( {1 - \dfrac{{\sqrt 3 }}{4}} \right)\].
Note:
In the first quadrant, all trigonometric functions are positive. In the second quadrant, \[\sin \] and \[\cos ec\] are positive. In the third quadrant, \[\tan \] and \[\cot \] are positive. In the fourth quadrant, \[\cos \] and \[\sec \] are positive. Also, note that here we have used values of some standard angles i.e., \[\sin {30^ \circ } = \dfrac{1}{2}\], \[\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}\] and \[\tan {45^ \circ } = 1\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE