![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Using the data provided, calculate the multiple bond energy (\[KJmo{{l}^{-1}}\]) of a \[C\equiv C\] bond in \[{{C}_{2}}{{H}_{2}}\]. That energy is:
(take the bond energy of a \[C-H\]bond as 350 \[KJmo{{l}^{-1}}\])
\[2C(s)+{{H}_{2}}(g)\to {{C}_{2}}{{H}_{2}}(g)\]; \[\Delta H=225KJmo{{l}^{-1}}\]
\[2C(s)\to 2C(g)\]; \[\Delta H=1410KJmo{{l}^{-1}}\]
\[{{H}_{2}}(g)\to 2H(g)\]; \[\Delta H=330KJmo{{l}^{-1}}\]
A. 1165
B. 837
C. 865
D. 815
Answer
463.5k+ views
Hint: Bond energy of a chemical bond in a compound is the average value of all the bond dissociation enthalpies of that bond in the molecule and it is also known by some other names called mean bond enthalpy or average bond enthalpy which generally used to measure the strength of bond.
Complete Solution :
Bond energy is energy required to dissociate the bonds. The bond dissociation energy can be calculated by the difference between bond energy of products and reactants. Bond energy is the average of all bond-dissociation energies of a single type of bond in a given molecule. The bond-dissociation energies of different bonds of the same type can vary even within a single molecule. When the bond is broken the bonding electron pair will split equally into the products. This process is called homolytic bond cleavage and results in the formation of radicals. Metallic radius, ionic radius, and covalent radius of each atom in a molecule can be used to determine the bond strength.
\[\Delta H={{(bond~energy)}_{R}}-{{(bond~energy)}_{P}}\]
\[225=[(1410+330)-(\Delta {{H}_{C\equiv C}}+2\times 350)]\]
\[\Delta {{H}_{C\equiv C}}=[1515-700]\]
\[\Delta {{H}_{C\equiv C}}=815Kjmo{{l}^{-1}}\]
So, the correct answer is “Option D”.
Note: Bond energy depends on many factors like the electronegativity of the two atoms bonding together affects ionic bond energy. The farther away the electronegativity of two atoms the stronger is the bond generally. And mostly ionic bonds are stronger than covalent bonds. By looking at melting points, ionic compounds have high melting points and covalent compounds have low melting points.
Complete Solution :
Bond energy is energy required to dissociate the bonds. The bond dissociation energy can be calculated by the difference between bond energy of products and reactants. Bond energy is the average of all bond-dissociation energies of a single type of bond in a given molecule. The bond-dissociation energies of different bonds of the same type can vary even within a single molecule. When the bond is broken the bonding electron pair will split equally into the products. This process is called homolytic bond cleavage and results in the formation of radicals. Metallic radius, ionic radius, and covalent radius of each atom in a molecule can be used to determine the bond strength.
\[\Delta H={{(bond~energy)}_{R}}-{{(bond~energy)}_{P}}\]
\[225=[(1410+330)-(\Delta {{H}_{C\equiv C}}+2\times 350)]\]
\[\Delta {{H}_{C\equiv C}}=[1515-700]\]
\[\Delta {{H}_{C\equiv C}}=815Kjmo{{l}^{-1}}\]
So, the correct answer is “Option D”.
Note: Bond energy depends on many factors like the electronegativity of the two atoms bonding together affects ionic bond energy. The farther away the electronegativity of two atoms the stronger is the bond generally. And mostly ionic bonds are stronger than covalent bonds. By looking at melting points, ionic compounds have high melting points and covalent compounds have low melting points.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Define least count of vernier callipers How do you class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The combining capacity of an element is known as i class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the image of the point 38 about the line x+3y class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)