Using the truth table, examine whether the following statement pattern is tautology, contradiction and contingency.
$(p\wedge \sim q)\leftrightarrow (p\to q)$
Answer
Verified
123.3k+ views
Hint: Construct the truth table for $(p\wedge \sim q)\leftrightarrow (p\to q)$ and if all the propositions are true in every row then it is tautology, if all the propositions are false in every row then contradiction and if there is at least one row with true condition and one row with false condition, then it is contingency.
Complete step-by-step answer:
A truth table is a mathematical table used in logic- specifically in connection with Boolean algebra, Boolean functions and propositional calculus- which sets out the functional values of logical expressions on each of their functional arguments, that is for each combination of values taken by their logical variables. A truth table can be used to show whether a propositional expression is true for all input values, that is logically valid.
Tautology: A tautology has a logical form that cannot possibly be false no matter what truth values are assigned to the sentence letters.
Contradiction: A tautology has a logical form that cannot possibly be true no matter what truth values are assigned to the sentence letters.
Contingency: A Contingency has a logical form that can be either true or false depending on what truth values are assigned to the sentence letters.
Note: $p\wedge q$ is true when both $p$ and $q$ are true. $p\to q$ is true when $q$ is true or both are false. $p\leftrightarrow q$ is true when both $p$ and $q$ are true or both are false. This is the rule used to draw the above truth table.
Complete step-by-step answer:
A truth table is a mathematical table used in logic- specifically in connection with Boolean algebra, Boolean functions and propositional calculus- which sets out the functional values of logical expressions on each of their functional arguments, that is for each combination of values taken by their logical variables. A truth table can be used to show whether a propositional expression is true for all input values, that is logically valid.
Tautology: A tautology has a logical form that cannot possibly be false no matter what truth values are assigned to the sentence letters.
Contradiction: A tautology has a logical form that cannot possibly be true no matter what truth values are assigned to the sentence letters.
Contingency: A Contingency has a logical form that can be either true or false depending on what truth values are assigned to the sentence letters.
Note: $p\wedge q$ is true when both $p$ and $q$ are true. $p\to q$ is true when $q$ is true or both are false. $p\leftrightarrow q$ is true when both $p$ and $q$ are true or both are false. This is the rule used to draw the above truth table.
Recently Updated Pages
The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main
Find the reminder when 798 is divided by 5 class 11 maths JEE_Main
Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main
A ray of light moving parallel to the xaxis gets reflected class 11 maths JEE_Main
A man on the top of a vertical observation tower o-class-11-maths-JEE_Main
If there are 25 railway stations on a railway line class 11 maths JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics