
What is the value of $\sin {105^0} + \cos {105^0}$?
$
{\text{A}}{\text{. }}\sin {50^0} \\
{\text{B}}{\text{. cos}}{50^0} \\
{\text{C}}{\text{. }}\dfrac{1}{{\sqrt 2 }} \\
{\text{D}}{\text{. 0}} \\
$
Answer
620.4k+ views
Hint- Here, we will be splitting the angle ${105^0}$ into the sum of ${60^0}$ and ${45^0}$ because from the trigonometric table we know the values of the trigonometric functions corresponding to ${60^0}$ and ${45^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

