Answer
Verified
497.4k+ views
Hint- Here, we will be splitting the angle ${105^0}$ into the sum of ${60^0}$ and ${45^0}$ because from the trigonometric table we know the values of the trigonometric functions corresponding to ${60^0}$ and ${45^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE