What is the derivative of $ i? $
Answer
Verified
410.1k+ views
Hint: As we know that $ i $ is an imaginary part of the complex number. It is known as iota. We know that a complex number is a number which can be expressed in the $ a + bi $ form, where $ a $ and $ b $ are real numbers and $ i $ is the imaginary number. It means it consists of both real and imaginary parts. We can find the value of the imaginary unit number which is a negative number inside the square root. It is given by $ \sqrt { - 1} $
Complete step-by-step answer:
As per the given we have to find the derivative of iota i.e. $ i $ .
From the above we can see that the value of iota is i.e. $ i = \sqrt { - 1} $ . We can see that it is a constant.
We know that the derivative of any constant number is always zero. Here the value is also constant though imaginary.
Therefore, $ \dfrac{d}{{dx}}C = 0 $
$\Rightarrow \dfrac{d}{{dx}}i = 0 $
Hence we can say that the derivative of $ i $ is $ 0 $ .
So, the correct answer is “0”.
Note: We should know the constant rule which is , Let $ C $ be the constant. If $ f(x) = C, $ then $ f'(x) = 0 $ or we can write that $ \dfrac{d}{{dx}}C = 0 $ . The constant rule says that the derivative of any constant function is always $ 0 $ . We should be careful while calculating the values and in the square of the imaginary part we should note that the square of any negative number is always positive, the negative sign changes.
Complete step-by-step answer:
As per the given we have to find the derivative of iota i.e. $ i $ .
From the above we can see that the value of iota is i.e. $ i = \sqrt { - 1} $ . We can see that it is a constant.
We know that the derivative of any constant number is always zero. Here the value is also constant though imaginary.
Therefore, $ \dfrac{d}{{dx}}C = 0 $
$\Rightarrow \dfrac{d}{{dx}}i = 0 $
Hence we can say that the derivative of $ i $ is $ 0 $ .
So, the correct answer is “0”.
Note: We should know the constant rule which is , Let $ C $ be the constant. If $ f(x) = C, $ then $ f'(x) = 0 $ or we can write that $ \dfrac{d}{{dx}}C = 0 $ . The constant rule says that the derivative of any constant function is always $ 0 $ . We should be careful while calculating the values and in the square of the imaginary part we should note that the square of any negative number is always positive, the negative sign changes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE