Answer
Verified
431.1k+ views
Hint:
Here, we have to find the functions which are homogeneous. We will find the functions which are homogeneous by using the condition of homogeneity. A homogeneous function is one with multiplicative scaling behavior i.e., if all its arguments are multiplied by a factor, then its value is multiplied by some power of this factor.
Formula Used:
A homogeneous function is a function which satisfies the condition,
\[f(tx,ty) = {t^n}f(x,y)\] for some \[n > 0\]
Complete step by step solution:
We are given functions, to check whether it is a homogeneous function.
A homogeneous function is a function which satisfies the condition,
\[f(tx,ty) = {t^n}f(x,y)\] for some \[n > 0\].
A) \[f\left( {x,y} \right) = x\sin y + y\sin x\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = tx\sin \left( {ty} \right) + ty\sin \left( {tx} \right)\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = = t\left( {x\sin ty + y\sin tx} \right)\]
But \[x\sin ty + y\sin tx \ne f\left( {x,y} \right)\]
Hence it is not a homogeneous function.
B) \[f\left( {x,y} \right) = x{e^{y/x}} + y{e^{x/y}}\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = tx{e^{ty/tx}} + ty{e^{tx/ty}}\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = t\left( {x{e^{y/x}} + y{e^{x/y}}} \right)\]
\[ \Rightarrow f\left( {tx,ty} \right) = tf\left( {x,y} \right)\]
Hence it is a homogeneous function.
C) \[f\left( {x,y} \right) = {x^2} - xy\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = {(tx)^2} - txty\]
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}{x^2} - {t^2}xy\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}({x^2} - xy)\]
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}f\left( {x,y} \right)\]
Hence it is a homogeneous function.
D) We know that \[\arcsin (xy) = {\sin ^{ - 1}}(xy)\]
\[ \Rightarrow f\left( {x,y} \right) = {\sin ^{ - 1}}\left( {xy} \right)\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = {\sin ^{ - 1}}\left( {txty} \right)\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = {\sin ^{ - 1}}\left( {{t^2}(xy)} \right)\]
But \[{\sin ^{ - 1}}\left( {{t^2}(xy)} \right) \ne f\left( {x,y} \right)\]
Hence it is not a homogeneous equation.
Therefore, the functions \[x{e^{y/x}} + y{e^{x/y}}\] and \[{x^2} - xy\] are homogeneous functions.
Note:
We should be very conscious in finding whether the given functions are homogeneous or not. We should replace the variable \[x\] by multiplying the variable with any constant \[tx\]. The zero function is homogeneous of any degree. The sum of homogeneous functions of the same homogeneous degree is also homogeneous of the same degree, unless it is identically the zero function. The product of homogeneous functions of degrees \[{d_1}\] and \[{d_2}\] is homogeneous of degree \[{d_1} + {d_2}\] . The reciprocal of a homogeneous function of degree d is homogeneous of degree −d. The k th power of a homogeneous function of degree \[d\] is homogeneous of degree \[kd\] . These are the rules of homogeneous function.
Here, we have to find the functions which are homogeneous. We will find the functions which are homogeneous by using the condition of homogeneity. A homogeneous function is one with multiplicative scaling behavior i.e., if all its arguments are multiplied by a factor, then its value is multiplied by some power of this factor.
Formula Used:
A homogeneous function is a function which satisfies the condition,
\[f(tx,ty) = {t^n}f(x,y)\] for some \[n > 0\]
Complete step by step solution:
We are given functions, to check whether it is a homogeneous function.
A homogeneous function is a function which satisfies the condition,
\[f(tx,ty) = {t^n}f(x,y)\] for some \[n > 0\].
A) \[f\left( {x,y} \right) = x\sin y + y\sin x\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = tx\sin \left( {ty} \right) + ty\sin \left( {tx} \right)\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = = t\left( {x\sin ty + y\sin tx} \right)\]
But \[x\sin ty + y\sin tx \ne f\left( {x,y} \right)\]
Hence it is not a homogeneous function.
B) \[f\left( {x,y} \right) = x{e^{y/x}} + y{e^{x/y}}\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = tx{e^{ty/tx}} + ty{e^{tx/ty}}\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = t\left( {x{e^{y/x}} + y{e^{x/y}}} \right)\]
\[ \Rightarrow f\left( {tx,ty} \right) = tf\left( {x,y} \right)\]
Hence it is a homogeneous function.
C) \[f\left( {x,y} \right) = {x^2} - xy\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = {(tx)^2} - txty\]
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}{x^2} - {t^2}xy\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}({x^2} - xy)\]
\[ \Rightarrow f\left( {tx,ty} \right) = {t^2}f\left( {x,y} \right)\]
Hence it is a homogeneous function.
D) We know that \[\arcsin (xy) = {\sin ^{ - 1}}(xy)\]
\[ \Rightarrow f\left( {x,y} \right) = {\sin ^{ - 1}}\left( {xy} \right)\]
Now, by using the homogeneity condition, we will get
\[ \Rightarrow f\left( {tx,ty} \right) = {\sin ^{ - 1}}\left( {txty} \right)\]
Factoring out common terms, we get
\[ \Rightarrow f\left( {tx,ty} \right) = {\sin ^{ - 1}}\left( {{t^2}(xy)} \right)\]
But \[{\sin ^{ - 1}}\left( {{t^2}(xy)} \right) \ne f\left( {x,y} \right)\]
Hence it is not a homogeneous equation.
Therefore, the functions \[x{e^{y/x}} + y{e^{x/y}}\] and \[{x^2} - xy\] are homogeneous functions.
Note:
We should be very conscious in finding whether the given functions are homogeneous or not. We should replace the variable \[x\] by multiplying the variable with any constant \[tx\]. The zero function is homogeneous of any degree. The sum of homogeneous functions of the same homogeneous degree is also homogeneous of the same degree, unless it is identically the zero function. The product of homogeneous functions of degrees \[{d_1}\] and \[{d_2}\] is homogeneous of degree \[{d_1} + {d_2}\] . The reciprocal of a homogeneous function of degree d is homogeneous of degree −d. The k th power of a homogeneous function of degree \[d\] is homogeneous of degree \[kd\] . These are the rules of homogeneous function.
Recently Updated Pages
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE