Answer
Verified
441.3k+ views
Hint: The ion having the most stable electronic configuration on the splitting of d orbitals in ${t_{2g}}$ and ${e_g}$ orbitals will decide the stability of ions in the aqueous solution. The d orbitals splitting in this have a stable configuration. In the presence of the field, the stable electronic configuration will be the deciding factor for stability.
Complete step by step answer:
We know that the most stable ions have a stable ionic configuration that is the full filled or half-filled electronic configuration. The d orbital when the splitting takes place in the presence of a field consists of ${t_{2g}}$ and ${e_g}$ levels. The lower energy level is called the ${t_{2g}}$ level and the high energy level is called the ${e_g}$ level. The completed filled ${t_{2g}}$level consists of six electrons and ${e_g}$ the level consists of four electrons. The half-filled configuration contains half of the electrons in both of them.
Now the atomic number of manganese is twenty-five. The electronic configuration of manganese is as follows
$Mn \to [Ar]4{s^2}3{d^5}$
Now it loses three electrons. So the electronic configuration of $M{n^{3 + }}$ is as follows
$M{n^{3 + }} \to [Ar]4{s^0}3{d^4}$
Out of the four electrons present in the d orbital three are in ${t_{2g}}$ and one electron is present in the ${e_g}$ orbital. Here the half-filled electronic configuration is in the lower energy level and in the higher energy level, not anything as half-filled or full-filled as one electron is present which reduces the stability. So it does not have the most stable configuration in an aqueous solution.
Similarly for chromium ion, the electronic configuration is $C{r^{3 + }} \to [Ar]4{s^0}3{d^3}$ . Here the configuration has a half-filled exceptionally stable configuration. For vanadium ion and titanium ion, the configurations are $[Ar]4{s^0}3{d^2}$ and $[Ar]4{s^0}3{d^1}$ respectively. These are not stable in aqueous solutions. So $C{r^{3 + }}$ is the most stable in an aqueous solution. $C{r^{3 + }}$
So, the correct answer is Option B.
Note: The distribution of electrons in the ${t_{2g}}$ orbital and ${e_g}$ orbital are there in such a way that the three electrons enter the former level first. It is due to the crystal field splitting energy(CFSE). In the presence of the field, the stable electronic configuration will be the deciding factor for stability.
Complete step by step answer:
We know that the most stable ions have a stable ionic configuration that is the full filled or half-filled electronic configuration. The d orbital when the splitting takes place in the presence of a field consists of ${t_{2g}}$ and ${e_g}$ levels. The lower energy level is called the ${t_{2g}}$ level and the high energy level is called the ${e_g}$ level. The completed filled ${t_{2g}}$level consists of six electrons and ${e_g}$ the level consists of four electrons. The half-filled configuration contains half of the electrons in both of them.
Now the atomic number of manganese is twenty-five. The electronic configuration of manganese is as follows
$Mn \to [Ar]4{s^2}3{d^5}$
Now it loses three electrons. So the electronic configuration of $M{n^{3 + }}$ is as follows
$M{n^{3 + }} \to [Ar]4{s^0}3{d^4}$
Out of the four electrons present in the d orbital three are in ${t_{2g}}$ and one electron is present in the ${e_g}$ orbital. Here the half-filled electronic configuration is in the lower energy level and in the higher energy level, not anything as half-filled or full-filled as one electron is present which reduces the stability. So it does not have the most stable configuration in an aqueous solution.
Similarly for chromium ion, the electronic configuration is $C{r^{3 + }} \to [Ar]4{s^0}3{d^3}$ . Here the configuration has a half-filled exceptionally stable configuration. For vanadium ion and titanium ion, the configurations are $[Ar]4{s^0}3{d^2}$ and $[Ar]4{s^0}3{d^1}$ respectively. These are not stable in aqueous solutions. So $C{r^{3 + }}$ is the most stable in an aqueous solution. $C{r^{3 + }}$
So, the correct answer is Option B.
Note: The distribution of electrons in the ${t_{2g}}$ orbital and ${e_g}$ orbital are there in such a way that the three electrons enter the former level first. It is due to the crystal field splitting energy(CFSE). In the presence of the field, the stable electronic configuration will be the deciding factor for stability.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers