
How do you write \[0.000223 \times {10^{ - 2}}\] in scientific notation?
Answer
541.5k+ views
Hint: In this problem, we will first convert the number \[0.000223\] to scientific notation and then add the powers of 10. We know that the scientific notation is a method of writing very large or very small numbers. A number is written in scientific notation when a number between 1 and 10 is multiplied by a power of 10.
Complete step by step solution:
We know that all numbers in scientific notation or standard form are written in the form \[m \times {10^n}\], where \[m\] is a number between 1 and 10 which means that \[1 \leqslant \left| m \right| < 10{\text{ }}\] and the exponent n is a positive or negative integer. First we will convert the number \[0.000223\] to scientific notation. We can convert \[0.000223\] into scientific notation by using the following steps:
-We will first move the decimal four times to right in the number so that the resulting number will be \[m = 2.23\] which is greater than 1 but less than 10.
-Here, we have moved the decimal to the right, as a result the exponent \[n\] is negative.
\[n = - 4\]
-Now, if we will write in the scientific notation form \[m \times {10^n}\], we get
$2.23 \times {10^{ - 4}}$
\[ \Rightarrow 0.000223 \times {10^{ - 2}} = 2.23 \times {10^{ - 4}} \times {10^{ - 2}} \\
\therefore 0.000223 \times {10^{ - 2}}= 2.23 \times {10^{ - 6}}\]
Thus, $2.23 \times {10^{ - 6}}$ is our final answer.
Note:While solving this type of problem, one important thing to keep in mind is the direction in which we move the decimal. If we move the decimal in the right direction, the exponent value will be negative. And when we move the decimal in the left direction the exponent value will be positive. If we forget to consider this, the answer obtained will be wrong.
Complete step by step solution:
We know that all numbers in scientific notation or standard form are written in the form \[m \times {10^n}\], where \[m\] is a number between 1 and 10 which means that \[1 \leqslant \left| m \right| < 10{\text{ }}\] and the exponent n is a positive or negative integer. First we will convert the number \[0.000223\] to scientific notation. We can convert \[0.000223\] into scientific notation by using the following steps:
-We will first move the decimal four times to right in the number so that the resulting number will be \[m = 2.23\] which is greater than 1 but less than 10.
-Here, we have moved the decimal to the right, as a result the exponent \[n\] is negative.
\[n = - 4\]
-Now, if we will write in the scientific notation form \[m \times {10^n}\], we get
$2.23 \times {10^{ - 4}}$
\[ \Rightarrow 0.000223 \times {10^{ - 2}} = 2.23 \times {10^{ - 4}} \times {10^{ - 2}} \\
\therefore 0.000223 \times {10^{ - 2}}= 2.23 \times {10^{ - 6}}\]
Thus, $2.23 \times {10^{ - 6}}$ is our final answer.
Note:While solving this type of problem, one important thing to keep in mind is the direction in which we move the decimal. If we move the decimal in the right direction, the exponent value will be negative. And when we move the decimal in the left direction the exponent value will be positive. If we forget to consider this, the answer obtained will be wrong.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What was the main occupation of early Aryans of rig class 7 social science CBSE

Welcome speech for Christmas day celebration class 7 english CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What is the use of kink in a clinical thermometer class 7 physics CBSE

Aeroplanes fly in which of the following layers of class 7 social science CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE


