Answer
Verified
496.8k+ views
Hint: In this question we are provided with a term that is order of the surds mathematically it means that, in $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand. After learning this we will pretty much be clear about our next step which involves dealing with roots and exponents then we have to arrange the data in ascending order which is when we move from smaller to the bigger number.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Complete step-by-step answer:
For solving the given question, we first must be aware of the order of a surd. The order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$, n is called the order of surd and a is called the radicand.
Now, coming back to the question we know we are given the following sets:
$
\sqrt[4]{{625}} = \sqrt[4]{{{{(5)}^4}}} = \sqrt[4]{{5 \times 5 \times 5 \times 5}} = 5 \\
\sqrt[3]{{343}} = \sqrt[3]{{{{(7)}^3}}} = \sqrt[3]{{7 \times 7 \times 7}} = 7 \\
\sqrt {100} = \sqrt {{{10}^2}} = \sqrt {10 \times 10} = 10 \\
$
Hence, the ascending order is 5<7<10.
Note: In this question one must note that we should know at first what order of a surd indicates the index of a root to be extracted. In $\sqrt[n]{a}$ , n is called the order of surd and a is called the radicand. Then once the basic is clear it is a very simple question which involves exponents and powers and nothing other than that also one must know what is ascending order in this type of arrangement we arrange going from the smaller value to the bigger keeping these small points in mind one should be able to solve the question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE