Answer
Verified
497.7k+ views
Hint: To find the degree of the given polynomial, represent it in the standard form and find the highest power to which the variable is raised, that is the degree of the polynomial.
Complete step-by-step answer:
A polynomial is defined as an expression that contains two or more algebraic terms. It includes constants, variables and exponents. “Poly” means many and “Nominal” means terms. Example for a polynomial is \[5{x^2} + 2\].
The polynomial is said to be in its standard form when the terms are written in the decreasing order of power. For example, the standard form of \[8x + {x^2}\] is \[{x^2} + 8x\] .
The degree of a polynomial is defined as the highest power to which the variables in the terms are raised. It is also the exponent of the first term in the standard form of the polynomial. For example, the degree of the polynomial \[{x^3} + 8x - {x^5}\] is 5.
To find the degree of the given polynomial, we first express it in the standard form. Then, we find the exponent of the variable in the first term.
Expressing the given polynomial \[19x + \sqrt 3 x + 14\] in the standard form, we get:
\[19x + \sqrt 3 x + 14 = \left( {19 + \sqrt 3 } \right)x + 14\]
The first term in the standard form is \[\left( {19 + \sqrt 3 } \right)x\]. The exponent of the variable in the first term is one.
Therefore, the degree of the polynomial is one.
Note: We can also solve by finding the exponents of all the terms of the polynomial and then choosing the highest number among them, which is also the degree of the polynomial. You might get confused with the definition of degree of polynomial as the coefficient of highest power or the exponent having the greatest coefficient, of which both are wrong.
Complete step-by-step answer:
A polynomial is defined as an expression that contains two or more algebraic terms. It includes constants, variables and exponents. “Poly” means many and “Nominal” means terms. Example for a polynomial is \[5{x^2} + 2\].
The polynomial is said to be in its standard form when the terms are written in the decreasing order of power. For example, the standard form of \[8x + {x^2}\] is \[{x^2} + 8x\] .
The degree of a polynomial is defined as the highest power to which the variables in the terms are raised. It is also the exponent of the first term in the standard form of the polynomial. For example, the degree of the polynomial \[{x^3} + 8x - {x^5}\] is 5.
To find the degree of the given polynomial, we first express it in the standard form. Then, we find the exponent of the variable in the first term.
Expressing the given polynomial \[19x + \sqrt 3 x + 14\] in the standard form, we get:
\[19x + \sqrt 3 x + 14 = \left( {19 + \sqrt 3 } \right)x + 14\]
The first term in the standard form is \[\left( {19 + \sqrt 3 } \right)x\]. The exponent of the variable in the first term is one.
Therefore, the degree of the polynomial is one.
Note: We can also solve by finding the exponents of all the terms of the polynomial and then choosing the highest number among them, which is also the degree of the polynomial. You might get confused with the definition of degree of polynomial as the coefficient of highest power or the exponent having the greatest coefficient, of which both are wrong.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE