Answer
Verified
396.3k+ views
Hint: Start by using the equation of prism \[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] . Since the angles are small \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] the equation now becomes \[D = A\left( {\mu - 1} \right)\] . Then use the snell’s law \[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\] and since angles are small \[\sin i = i\] , \[\sin {r_1} = {r_1}\] , \[\sin {r_2} = {r_2}\] and \[\sin e = e\] . Use these values to obtain the equation \[u \approx \dfrac{i}{{{r_1}}}\] and \[\mu \approx \dfrac{e}{{{r_2}}}\] . Then use simple geometry to obtain the equation \[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] . Then put the value \[{r_1} + {r_2} = \angle A\] in the previous equation to reach the solution.
Complete answer:
The angle of deviation is the angle that the emerging ray coming out of a prism makes with the incident ray coming in the prism (indicated as angle D in the diagram below). This angle of deviation decreases with an increase in the angle of incidence, but only up to a minimum angle called the angle of minimum deviation (indicated by \[{D_m}\] ).
The refractive index of the material of the prism is calculated by using the following formula
\[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] (Equation 1)
\[\mu = \] The refractive index of the material of the prism
\[A = \] The angle of the prism
\[D = \] Angle of deviation
For thin prisms or small angle prisms, as the angles become very small, the sine of the angle nearly equals the angle itself, i.e. \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] .
Putting these values in equation 1, we get
\[\mu \approx \dfrac{{\left( {\dfrac{{A + D}}{2}} \right)}}{{\left( {\dfrac{A}{2}} \right)}}\]
\[\mu = \dfrac{{A + D}}{A}\]
\[\mu A = A + D\]
\[D = A\left( {\mu - 1} \right)\]
Now, for the angle of minimum deviation this equation becomes
\[{D_m} = A\left( {\mu - 1} \right)\]
We know by Snell’s law for the incident ray
\[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\]
Since the angles are small, so \[\sin i = i\] and \[\sin {r_1} = {r_1}\] .
So, \[u \approx \dfrac{i}{{{r_1}}}\]
We know by Snell’s law for the emergent ray
\[\dfrac{1}{\mu } = \dfrac{{\sin {r_2}}}{{\sin e}}\]
\[\mu = \dfrac{{\sin e}}{{\sin {r_2}}}\]
Since the angles are small, so \[\sin e = e\] and \[\sin {r_2} = {r_2}\] .
So, \[\mu \approx \dfrac{e}{{{r_2}}}\]
We know,
\[\angle AMB = \angle OMP = i\] (Vertically opposite Angles)
\[\angle CND = \angle PNO = e\] (Vertically opposite angles)
In \[\Delta OMN\] ,
\[\angle OMN + \angle MNO = \angle QON\] ( \[\angle QON\] is an external angle to the triangle \[\Delta OMN\] )
\[(\angle OMP - \angle NMP) + (\angle PNO - \angle MNP) = \angle QON\]
\[i - {r_1} + e - {r_2} = \angle D\]
\[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] (Equation 1)
In \[\Delta PMN\] the sum of all the angles is \[180^\circ \]
\[\angle OMN + \angle MNO + \angle MPN = 180^\circ \]
\[(90^\circ - \angle NMP) + \left( {90^\circ - \angle MNP} \right) + \angle A = 180^\circ \]
\[\left( {90^\circ - {r_1}} \right) + \left( {90^\circ - {r_2}} \right) + \angle A = 180\]
\[{r_1} + {r_2} = \angle A\]
Substituting this value in equation 1, we get
\[\left( {i + e} \right) - \left( {\angle A} \right) = \angle D\]
For, the angle of minimum deviation, \[i = e\] , so equation 2 becomes
\[2i - \angle A = \angle {D_{\min }}\]
\[i = \dfrac{{A + {D_{\min }}}}{2}\]
Note:
The prism is optical equipment that is used to observe the dispersion of white light. The prism makes use of the fact that light travels with different speeds in different mediums. The prism is normally made out of glass, the edges of the prism should be perfect during the manufacturing of the glass prisms.
Complete answer:
The angle of deviation is the angle that the emerging ray coming out of a prism makes with the incident ray coming in the prism (indicated as angle D in the diagram below). This angle of deviation decreases with an increase in the angle of incidence, but only up to a minimum angle called the angle of minimum deviation (indicated by \[{D_m}\] ).
The refractive index of the material of the prism is calculated by using the following formula
\[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] (Equation 1)
\[\mu = \] The refractive index of the material of the prism
\[A = \] The angle of the prism
\[D = \] Angle of deviation
For thin prisms or small angle prisms, as the angles become very small, the sine of the angle nearly equals the angle itself, i.e. \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] .
Putting these values in equation 1, we get
\[\mu \approx \dfrac{{\left( {\dfrac{{A + D}}{2}} \right)}}{{\left( {\dfrac{A}{2}} \right)}}\]
\[\mu = \dfrac{{A + D}}{A}\]
\[\mu A = A + D\]
\[D = A\left( {\mu - 1} \right)\]
Now, for the angle of minimum deviation this equation becomes
\[{D_m} = A\left( {\mu - 1} \right)\]
We know by Snell’s law for the incident ray
\[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\]
Since the angles are small, so \[\sin i = i\] and \[\sin {r_1} = {r_1}\] .
So, \[u \approx \dfrac{i}{{{r_1}}}\]
We know by Snell’s law for the emergent ray
\[\dfrac{1}{\mu } = \dfrac{{\sin {r_2}}}{{\sin e}}\]
\[\mu = \dfrac{{\sin e}}{{\sin {r_2}}}\]
Since the angles are small, so \[\sin e = e\] and \[\sin {r_2} = {r_2}\] .
So, \[\mu \approx \dfrac{e}{{{r_2}}}\]
We know,
\[\angle AMB = \angle OMP = i\] (Vertically opposite Angles)
\[\angle CND = \angle PNO = e\] (Vertically opposite angles)
In \[\Delta OMN\] ,
\[\angle OMN + \angle MNO = \angle QON\] ( \[\angle QON\] is an external angle to the triangle \[\Delta OMN\] )
\[(\angle OMP - \angle NMP) + (\angle PNO - \angle MNP) = \angle QON\]
\[i - {r_1} + e - {r_2} = \angle D\]
\[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] (Equation 1)
In \[\Delta PMN\] the sum of all the angles is \[180^\circ \]
\[\angle OMN + \angle MNO + \angle MPN = 180^\circ \]
\[(90^\circ - \angle NMP) + \left( {90^\circ - \angle MNP} \right) + \angle A = 180^\circ \]
\[\left( {90^\circ - {r_1}} \right) + \left( {90^\circ - {r_2}} \right) + \angle A = 180\]
\[{r_1} + {r_2} = \angle A\]
Substituting this value in equation 1, we get
\[\left( {i + e} \right) - \left( {\angle A} \right) = \angle D\]
For, the angle of minimum deviation, \[i = e\] , so equation 2 becomes
\[2i - \angle A = \angle {D_{\min }}\]
\[i = \dfrac{{A + {D_{\min }}}}{2}\]
Note:
The prism is optical equipment that is used to observe the dispersion of white light. The prism makes use of the fact that light travels with different speeds in different mediums. The prism is normally made out of glass, the edges of the prism should be perfect during the manufacturing of the glass prisms.
Recently Updated Pages
Three bells tolls at the intervals of 9 12 15 minu-class-10-maths-CBSE
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE
A 150 m long train is moving with a uniform velocity class 10 maths CBSE
Exact definition of “Human Poverty”
How are lungs designed in human beings to maximize class 10 biology CBSE
The odometer of the car reads 2000 km at the start class 10 physics CBSE
Trending doubts
Capital of the Cheras was A Madurai B Muziri C Uraiyur class 10 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
A Tesla is equivalent to a A Newton per coulomb B Newton class 9 physics CBSE
Which are the Top 10 Largest Countries of the World?
The capital of British India was transferred from Calcutta class 10 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What is spore formation class 11 biology CBSE
Queen Victoria became the Empress of India according class 7 social science CBSE
Who was the first scientist to propose a model for class 11 chemistry CBSE