Answer
Verified
453k+ views
Hint Draw a ray diagram showing the refraction inside and outside a prism. Use exterior angle property, angle sum property of a triangle and a quadrilateral and hence find a relation between incident angle, angle of deviation, and prism angle. Consider the ray of light to undergo a minimum angle of deviation and approximate the incident angle and emergent angle. Finally, substitute the derived value of incident and refracted angle into Snell’s law.
Complete step by step answer:
Let us consider a prism $ABC$ with a refractive index $\mu $. Let $QN$ and $RN$ be normal lines to the faces $AB$ and $AC$ respectively. Let the incident angle on the face $AB$ be ${{i}_{1}}$ and the refracted angle on this face be ${{r}_{1}}$. Let the incident angle on the face $AC$ be ${{r}_{2}}$ and the refracted ray after passing through $AC$ be ${{i}_{2}}$. We will extend the ray lines- $PQ$ and $SR$ to the point $O$. Let the angle of deviation be $d$.
In the quadrilateral $AQNR$, the sum of all four angles must be ${{360}^{\circ }}$ .
$\therefore \angle A+\angle N+\angle AQN+\angle ARN={{360}^{\circ }}$
But here, $\angle AQN=\angle ARN={{90}^{\circ }}$ as they are normal rays.
$\Rightarrow \angle A+\angle N=360-180$
Rearranging the above equation gives us
$\angle A=180-\angle N$
$\Rightarrow \angle A$ is an exterior angle in the triangle, $\Delta QRN$ .
Therefore, using the exterior angle property for the triangle $\Delta QRN$ gives us ${{r}_{1}}+{{r}_{2}}=A$ .
From the figure, let ${{i}_{1}}-{{r}_{1}}={{d}_{1}}$ and ${{i}_{2}}-{{r}_{2}}={{d}_{2}}$
By using the exterior angle property for the triangle $\Delta QOR$ ,
${{d}_{1}}+{{d}_{2}}=d$
By substituting ${{d}_{1}}$ as ${{i}_{1}}-{{r}_{1}}$ and ${{d}_{2}}$ as ${{i}_{2}}-{{r}_{2}}$, we get
${{i}_{1}}-{{r}_{1}}+{{i}_{2}}-{{r}_{2}}=d$
But we have already proved that ${{r}_{1}}+{{r}_{2}}=A$,
$\Rightarrow d={{i}_{1}}+{{i}_{2}}-A$
In the case of minimum deviation, ${{i}_{1}}\approx {{i}_{2}}\approx i$ and $d={{d}_{m}}$ .
Substituting these values in the above equation, we get
$i=\dfrac{A+{{d}_{m}}}{2}$
Now let us write Snell’s law for the prism,
$\mu =\dfrac{\sin i}{\sin r}$
From the already calculated values of $i$ and $r$, we get
$\mu =\dfrac{\sin \left( \dfrac{A+{{d}_{m}}}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}$
This is the equation of the refractive index for a prism with the prism angle - $A$ and angle of minimum deviation -${{d}_{m}}$ .
Note
A minimum angle of deviation in a prism means that the incident and the emergent angles will be equal, the refracted angles inside will be equal and the refracted ray will run parallel to the base of the prism. We use Snell’s law as the medium is getting changed.
Complete step by step answer:
Let us consider a prism $ABC$ with a refractive index $\mu $. Let $QN$ and $RN$ be normal lines to the faces $AB$ and $AC$ respectively. Let the incident angle on the face $AB$ be ${{i}_{1}}$ and the refracted angle on this face be ${{r}_{1}}$. Let the incident angle on the face $AC$ be ${{r}_{2}}$ and the refracted ray after passing through $AC$ be ${{i}_{2}}$. We will extend the ray lines- $PQ$ and $SR$ to the point $O$. Let the angle of deviation be $d$.
In the quadrilateral $AQNR$, the sum of all four angles must be ${{360}^{\circ }}$ .
$\therefore \angle A+\angle N+\angle AQN+\angle ARN={{360}^{\circ }}$
But here, $\angle AQN=\angle ARN={{90}^{\circ }}$ as they are normal rays.
$\Rightarrow \angle A+\angle N=360-180$
Rearranging the above equation gives us
$\angle A=180-\angle N$
$\Rightarrow \angle A$ is an exterior angle in the triangle, $\Delta QRN$ .
Therefore, using the exterior angle property for the triangle $\Delta QRN$ gives us ${{r}_{1}}+{{r}_{2}}=A$ .
From the figure, let ${{i}_{1}}-{{r}_{1}}={{d}_{1}}$ and ${{i}_{2}}-{{r}_{2}}={{d}_{2}}$
By using the exterior angle property for the triangle $\Delta QOR$ ,
${{d}_{1}}+{{d}_{2}}=d$
By substituting ${{d}_{1}}$ as ${{i}_{1}}-{{r}_{1}}$ and ${{d}_{2}}$ as ${{i}_{2}}-{{r}_{2}}$, we get
${{i}_{1}}-{{r}_{1}}+{{i}_{2}}-{{r}_{2}}=d$
But we have already proved that ${{r}_{1}}+{{r}_{2}}=A$,
$\Rightarrow d={{i}_{1}}+{{i}_{2}}-A$
In the case of minimum deviation, ${{i}_{1}}\approx {{i}_{2}}\approx i$ and $d={{d}_{m}}$ .
Substituting these values in the above equation, we get
$i=\dfrac{A+{{d}_{m}}}{2}$
Now let us write Snell’s law for the prism,
$\mu =\dfrac{\sin i}{\sin r}$
From the already calculated values of $i$ and $r$, we get
$\mu =\dfrac{\sin \left( \dfrac{A+{{d}_{m}}}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}$
This is the equation of the refractive index for a prism with the prism angle - $A$ and angle of minimum deviation -${{d}_{m}}$ .
Note
A minimum angle of deviation in a prism means that the incident and the emergent angles will be equal, the refracted angles inside will be equal and the refracted ray will run parallel to the base of the prism. We use Snell’s law as the medium is getting changed.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE