
Write the relationship between Gibbs energy, equilibrium constant and change in enthalpy.
Answer
137.4k+ views
Hint: There is no single formula relating the three terms, but two different formulae for the relation. Gibbs energy is represented as $\vartriangle \text{G}$, equilibrium constant as ${{\text{K}}_{\text{eq}}}$ and change in enthalpy as $\vartriangle \text{H}$. One is the formula of thermodynamics and spontaneity and another is telling the reaction is spontaneous if the reaction with equilibrium constants.
Complete step by step answer:
Let us first write the relation between Gibbs energy and change in enthalpy.
The Gibbs free energy of a system is defined as the enthalpy of a system (amount of heat absorbed or evolved) minus the product of temperature multiplied to entropy of a system (randomness). $\text{G= H-TS}$; but this is with enthalpy not with change in enthalpy.
Gibbs free energy is a state function, so the change of Gibbs free energy is defined as change of enthalpy minus the change in temperature multiplied with entropy of a system.
It is written as $\vartriangle \text{G= }\vartriangle \text{H-}\left( \vartriangle \text{TS} \right)$. If we take temperature to be constant, the equation becomes
$\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$.
This is the relation we generally use while solving the questions or checking the spontaneity of reactions.
Now, move to the relation between Gibbs free energy and equilibrium constant.
The relation between Gibbs free energy $\left( \vartriangle \text{G} \right)$, standard Gibbs free energy which is at ${{25}^{\text{o}}}\text{C}$ is $\left( \vartriangle {{\text{G}}^{\text{o}}} \right)$ and reaction quotient (Q) at any moment of time is $\vartriangle \text{G = }\vartriangle {{\text{G}}^{\text{o}}}+\text{RTlnQ}$; where R is ideal gas constant with value $8.314\text{ J}\text{.mo}{{\text{l}}^{-1}}{{\text{K}}^{-1}}$, T is the temperature in Kelvin. Q is written like equilibrium constant but is defined at any moment other than equilibrium.
When, the driving force of a chemical reaction is zero, then $\vartriangle \text{G}$ is zero and Q becomes ${{\text{K}}_{\text{eq}}}$ is $0=\vartriangle {{\text{G}}^{\text{o}}}+\text{RTln}{{\text{K}}_{\text{eq}}}$.
This expression is moulded to $\vartriangle {{\text{G}}^{\text{o}}}=-\text{RTln}{{\text{K}}_{\text{eq}}}$. The smaller the value of $\vartriangle {{\text{G}}^{\text{o}}}$, the closer the standard state is to equilibrium.
The relation between Gibbs energy and equilibrium constant is $\vartriangle {{\text{G}}^{\text{o}}}=-\text{RTln}{{\text{K}}_{\text{eq}}}$.
The relation between Gibbs energy and change in enthalpy is $\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$.
Note:
The beauty of $\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$ is the ability to determine the relative importance of the enthalpy and entropy as driving forces behind a reaction. $\vartriangle \text{G}$ measures the balance between the driving forces to determine whether a chemical reaction is spontaneous. If its value is less than zero, the reaction will be spontaneous . For positive values, the reaction is non spontaneous.
Complete step by step answer:
Let us first write the relation between Gibbs energy and change in enthalpy.
The Gibbs free energy of a system is defined as the enthalpy of a system (amount of heat absorbed or evolved) minus the product of temperature multiplied to entropy of a system (randomness). $\text{G= H-TS}$; but this is with enthalpy not with change in enthalpy.
Gibbs free energy is a state function, so the change of Gibbs free energy is defined as change of enthalpy minus the change in temperature multiplied with entropy of a system.
It is written as $\vartriangle \text{G= }\vartriangle \text{H-}\left( \vartriangle \text{TS} \right)$. If we take temperature to be constant, the equation becomes
$\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$.
This is the relation we generally use while solving the questions or checking the spontaneity of reactions.
Now, move to the relation between Gibbs free energy and equilibrium constant.
The relation between Gibbs free energy $\left( \vartriangle \text{G} \right)$, standard Gibbs free energy which is at ${{25}^{\text{o}}}\text{C}$ is $\left( \vartriangle {{\text{G}}^{\text{o}}} \right)$ and reaction quotient (Q) at any moment of time is $\vartriangle \text{G = }\vartriangle {{\text{G}}^{\text{o}}}+\text{RTlnQ}$; where R is ideal gas constant with value $8.314\text{ J}\text{.mo}{{\text{l}}^{-1}}{{\text{K}}^{-1}}$, T is the temperature in Kelvin. Q is written like equilibrium constant but is defined at any moment other than equilibrium.
When, the driving force of a chemical reaction is zero, then $\vartriangle \text{G}$ is zero and Q becomes ${{\text{K}}_{\text{eq}}}$ is $0=\vartriangle {{\text{G}}^{\text{o}}}+\text{RTln}{{\text{K}}_{\text{eq}}}$.
This expression is moulded to $\vartriangle {{\text{G}}^{\text{o}}}=-\text{RTln}{{\text{K}}_{\text{eq}}}$. The smaller the value of $\vartriangle {{\text{G}}^{\text{o}}}$, the closer the standard state is to equilibrium.
The relation between Gibbs energy and equilibrium constant is $\vartriangle {{\text{G}}^{\text{o}}}=-\text{RTln}{{\text{K}}_{\text{eq}}}$.
The relation between Gibbs energy and change in enthalpy is $\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$.
Note:
The beauty of $\vartriangle \text{G= }\vartriangle \text{H- T}\vartriangle \text{S}$ is the ability to determine the relative importance of the enthalpy and entropy as driving forces behind a reaction. $\vartriangle \text{G}$ measures the balance between the driving forces to determine whether a chemical reaction is spontaneous. If its value is less than zero, the reaction will be spontaneous . For positive values, the reaction is non spontaneous.
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Electromagnetic radiation with maximum wavelength is class 11 chemistry JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

The correct order of electron affinity is A F Cl Br class 11 chemistry JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Types of Solutions

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
