Class 11 Maths Chapter 3 Trigonometric Functions Notes FREE PDF Download
Trigonometry is a crucial part of Class 11 Mathematics, and mastering it is essential for success in both board exams and competitive exams. In Chapter 3, Trigonometric Functions, you’ll explore the fundamental concepts, identities, and applications of trigonometric functions. Our comprehensive notes simplify these complex topics, providing clear explanations, important formulas, and solved examples to help you easily grasp the subject.
Take advantage of the FREE PDF download to access these valuable resources anytime, anywhere. Visit our pages to get your class 11 Maths notes and check out the Class 11 Maths syllabus to stay on track with your studies.
Access Revision Notes for Class 11 Maths Chapter 3 Trigonometric Functions
1. The Meaning of Trigonometry
${{\text{Tri }}}{{\text{ Gon }}}{{\text{ Metron }}}$
$\downarrow\quad\;\;\;\;\downarrow\quad\;\;\;\;\downarrow$
$3\quad{{\text{ sides }}}{{\text{ Measure }}}$
As a result, this area of mathematics was established in the ancient past to measure a triangle's three sides, three angles, and six components. Time-trigonometric functions are utilised in a variety of ways nowadays. The sine and cosine of an angle in a right-angled triangle are the two fundamental functions, and there are four more derivative functions.
2. Basic Trigonometric Identities
(a) ${\sin ^2}\theta + {\cos ^2}\theta = 1: - 1 \leqslant \sin \theta \leqslant 1; - 1 \leqslant \cos \theta \leqslant 1\forall \theta \in {\text{R}}$
(b) ${\sec ^2}\theta - {\tan ^2}\theta = 1:|\sec \theta | \geqslant 1\forall \theta \in {\text{R}}$
(c) ${\operatorname{cosec} ^2}\theta - {\cot ^2}\theta = 1:|\operatorname{cosec} \theta | \geqslant 1\forall \theta \in {\text{R}}$
Trigonometric Ratios of Standard Angles:
Angles(In Degrees) | \[0^\circ \] | ${30^ \circ }$ | ${45^ \circ }$ | ${60^ \circ }$ | ${90^ \circ }$ | ${180^ \circ }$ | ${270^ \circ }$ | $360^\circ $ |
Angles(In radians) | 0 | $\dfrac{\pi }{6}$ | $\dfrac{\pi }{4}$ | $\dfrac{\pi }{3}$ | $\dfrac{\pi }{2}$ | $\pi $ | $\dfrac{{3\pi }}{2}$ | $2\pi $ |
Sin | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 | 0 | -1 | 0 |
Cos | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 | -1 | 0 | 1 |
Tan | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Not Defined | 0 | Not Defined | 1 |
Cot | Not Defined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 | Not Defined | 0 | Not Defined |
Csc | Not Defined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 | Not Defined | -1 | Not Defined |
Sec | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Not Defined | -1 | Not Defined | 1 |
The relation between these trigonometric identities with the sides of the triangles can be given as follows:
Sine θ $=$ Opposite/Hypotenuse
Cos θ $=$ Adjacent/Hypotenuse
Tan θ $=$ Opposite/Adjacent
Cot θ $=$ Adjacent/Opposite
Cosec θ = Hypotenuse/Opposite
Sec θ = Hypotenuse/Adjacent
The following are the signs of trigonometric ratios in different quadrants:
3. Trigonometric Ratios of Allied Angles
We might calculate the trigonometric ratios of angles of any value using the trigonometric ratio of allied angles.
1. Sin(–θ)=–Sinθ
2. Cos(–θ)=Cosθ
3. Tan(–θ)=–Tanθ
4. Sin(90o–θ)=Cosθ
5. Cos(90o–θ)=Sinθ
6. Tan(90o–θ)=Cotθ
7. Sin(180o–θ)=Sinθ
8. Cos(180o–θ)=–Cosθ
9. Tan(180o–θ)=–Tanθ
10. Sin(270o–θ)=–Cosθ
11. Cos(270o–θ)=–Sinθ
12. Tan(270o–θ)=Cotθ
13. Sin(90o+θ)=Cosθ
14. Cos(90o+θ)=–Sinθ
15. Tan(90o+θ)=–Cotθ
16. Sin(180o+θ)=–Sinθ
17. Cos(180o+θ)=–Cosθ
18. Tan(180o+θ)=Tanθ
19. Sin(270o+θ)=–Cosθ
20. Cos(270o+θ)=Sinθ
21. Tan(270o+θ)=–Cotθ
4. Trigonometric Functions of Sum or Difference of Two Angles
(a) $\sin ({\text{A}} + {\text{B}}) = \sin {\text{A}}\cos {\text{B}} + \cos {\text{A}}\sin {\text{B}}$
(b) $\sin ({\text{A}} - {\text{B}}) = \sin {\text{A}}\cos {\text{B}} - \cos {\text{A}}\sin {\text{B}}$
(c) $\cos (A + B) = \cos A\cos B - \sin A\sin B$
(d) $\cos ({\text{A}} - {\text{B}}) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
(e) $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
(f) $\tan ({\text{A}} - {\text{B}}) = \dfrac{{\tan {\text{A}} - \tan {\text{B}}}}{{1 + \tan {\text{A}}\tan {\text{B}}}}$
(g) $\cot (A + B) = \dfrac{{\cot A\cot B - 1}}{{\cot B + \cot A}}$
(f) $\cot ({\text{A}} - {\text{B}}) = \dfrac{{\cot {\text{A}}\cot {\text{B}} + 1}}{{\cot {\text{B}} - \cot {\text{A}}}}$
(h) ${\sin ^2}\;{\text{A}} - {\sin ^2}\;{\text{B}} = {\cos ^2}\;{\text{B}} - {\cos ^2}\;{\text{A}} = \sin ({\text{A}} + {\text{B}}) \cdot \sin ({\text{A}} - {\text{B}})$
(i) ${\cos ^2}\;{\text{A}} - {\sin ^2}\;{\text{B}} = {\cos ^2}\;{\text{B}} - {\sin ^2}\;{\text{A}} = \cos ({\text{A}} + {\text{B}}) \cdot \cos ({\text{A}} - {\text{B}})$
(j) $\tan (A + B + C) = \dfrac{{\tan A + \tan B + \tan C - \tan A\tan B\tan C}}{{1 - \tan A\tan B - \tan B\tan C - \tan C\tan A}}$
5. Multiple Angles and Half Angles
(a) $\sin 2\;{\text{A}} = 2\sin {\text{A}}\cos {\text{A}};\quad \sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
(b) $\cos 2\;{\text{A}} = {\cos ^2}\;{\text{A}} - {\sin ^2}\;{\text{A}} = 2{\cos ^2}\;{\text{A}} - 1 = 1 - 2{\sin ^2}\;{\text{A}}$
$2{\cos ^2}\dfrac{\theta }{2} = 1 + \cos \theta ,2{\sin ^2}\dfrac{\theta }{2} = 1 - \cos \theta $
(c) $\tan 2\;{\text{A}} = \dfrac{{2\tan {\text{A}}}}{{1 - {{\tan }^2}\;{\text{A}}}};\tan \theta = \dfrac{{2\tan \dfrac{\theta }{2}}}{{1 - {{\tan }^2}\dfrac{\theta }{2}}}$
(d) $\sin 2\;{\text{A}} = \dfrac{{2\tan {\text{A}}}}{{1 - {{\tan }^2}\;{\text{A}}}};\cos 2\;{\text{A}} = \dfrac{{1 - {{\tan }^2}\;{\text{A}}}}{{1 + {{\tan }^2}\;{\text{A}}}}$
(e) $\sin 3\;{\text{A}} = 3\sin {\text{A}} - 4{\sin ^3}\;{\text{A}}$
(f) $\cos 3\;{\text{A}} = 4{\cos ^3}\;{\text{A}} - 3\cos {\text{A}}$
(g) $\tan 3\;{\text{A}} = \dfrac{{3\tan {\text{A}} - {{\tan }^3}\;{\text{A}}}}{{1 - 3{{\tan }^2}\;{\text{A}}}}$
6. Transformation of Products into Sum or Difference of Sines & Cosines
(a) $2\sin {\text{A}}\cos {\text{B}} = \sin ({\text{A}} + {\text{B}}) + \sin ({\text{A}} - {\text{B}})$
(b) $2\cos {\text{A}}\sin {\text{B}} = \sin ({\text{A}} + {\text{B}}) - \sin ({\text{A}} - {\text{B}})$
(c) $2\cos {\text{A}}\cos {\text{B}} = \cos ({\text{A}} + {\text{B}}) + \cos ({\text{A}} - {\text{B}})$
(d) $2\sin {\text{A}}\sin {\text{B}} = \cos ({\text{A}} - {\text{B}}) - \cos ({\text{A}} + {\text{B}})$
7. Factorisation of the Sum or Difference of Two Sines or Cosines
(a) $\sin {\text{C}} + \sin {\text{D}} = 2\sin \dfrac{{{\text{C}} + {\text{D}}}}{2}\cos \dfrac{{{\text{C}} - {\text{D}}}}{2}$
(b) $\sin {\text{C}} - \sin {\text{D}} = 2\cos \dfrac{{{\text{C}} + {\text{D}}}}{2}\sin \dfrac{{{\text{C}} - {\text{D}}}}{2}$
(c) $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
(d) $\cos {\text{C}} - \cos {\text{D}} = - 2\sin \dfrac{{{\text{C}} + {\text{D}}}}{2}\sin \dfrac{{{\text{C}} - {\text{D}}}}{2}$
8. Important Trigonometric Ratios
(a) $\sin {\text{n}}\pi = 0;\cos {\text{n}}\pi = {( - 1)^{\text{n}}};\tan {\text{n}}\pi = 0$ where ${\text{n}} \in {\text{Z}}$
(b) $\sin {15^\circ }$ or $\sin \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos {75^\circ }$ or $\cos \dfrac{{5\pi }}{{12}}$;
$\cos {15^\circ }$ or $\cos \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin {75^\circ }$ or $\sin \dfrac{{5\pi }}{{12}}$
$\tan {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} = 2 - \sqrt 3 = \cot {75^\circ }$
$\tan {75^\circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = 2 + \sqrt 3 = \cot {15^\circ }$
(c) $\sin \dfrac{\pi }{{10}}$ or $\sin {18^\circ } = \dfrac{{\sqrt 5 - 1}}{4}$ & $\cos {36^\circ }$ or $\cos \dfrac{\pi }{5} = \dfrac{{\sqrt 5 + 1}}{4}$
9. Conditional Identities
If ${\text{A}} + {\text{B}} + {\text{C}} = \pi $ then :
(i) $\sin 2\;{\text{A}} + \sin 2\;{\text{B}} + \sin 2{\text{C}} = 4\sin {\text{A}}\sin {\text{B}}\sin {\text{C}}$
(ii) $\sin {\text{A}} + \sin {\text{B}} + \sin {\text{C}} = 4\cos \dfrac{{\text{A}}}{2}\cos \dfrac{{\text{B}}}{2}\cos \dfrac{{\text{C}}}{2}$
(iii) $\cos 2\;{\text{A}} + \cos 2\;{\text{B}} + \cos 2{\text{C}} = - 1 - 4\cos {\text{A}}\cos {\text{B}}\cos {\text{C}}$
(iv) $\cos {\text{A}} + \cos {\text{B}} + \cos {\text{C}} = 1 + 4\sin \dfrac{{\text{A}}}{2}\sin \dfrac{{\text{B}}}{2}\sin \dfrac{{\text{C}}}{2}$
(v) $\tan {\text{A}} + \tan {\text{B}} + \tan {\text{C}} = \tan {\text{A}}\tan {\text{B}}\tan {\text{C}}$
(vi) $\tan \dfrac{{\text{A}}}{2}\tan \dfrac{{\text{B}}}{2} + \tan \dfrac{{\text{B}}}{2}\tan \dfrac{{\text{C}}}{2} + \tan \dfrac{{\text{C}}}{2}\tan \dfrac{{\text{A}}}{2} = 1$
(vii) $\cot \dfrac{{\text{A}}}{2} + \cot \dfrac{{\text{B}}}{2} + \cot \dfrac{{\text{C}}}{2} = \cot \dfrac{{\text{A}}}{2} \cdot \cot \dfrac{{\text{B}}}{2} \cdot \cot \dfrac{{\text{C}}}{2}$
(viii) $\cot A\cot B + \cot B\cot C + \cot C\cot A = 1$
10. Range of Trigonometric Expression
${{\text{E}} = {\text{a}}\sin \theta + {\text{b}}\cos \theta }$
${{\text{E}} = \sqrt {{{\text{a}}^2} + {{\text{b}}^2}} \sin (\theta + \alpha ),\left( {{\text{ where }}\tan \alpha = \dfrac{{\text{b}}}{{\text{a}}}} \right)}$
${{\text{E}} = \sqrt {{{\text{a}}^2} + {{\text{b}}^2}} \cos (\theta - \beta ),\left( {{\text{ where }}\tan \beta = \dfrac{{\text{a}}}{{\text{b}}}} \right)}$
Hence for any real value of $\theta , - \sqrt {{a^2} + {b^2}} \leqslant E \leqslant \sqrt {{a^2} + {b^2}} $
The trigonometric functions are very important for studying triangles, light, sound or waves. The values of these trigonometric functions in different domains and ranges can be used from the following table:
Trigonometric Functions in Different Domains and Ranges
Trigonometric Functions | Domain | Range |
$\operatorname{Sin} x$ | R | $-1 \leq \sin x \leq 1$ |
$\operatorname{Cos} x$ | R | $-1 \leq \cos x \leq 1$ |
$\operatorname{Tan} x$ | $R-\{(2 n+1) \pi / 2, n \in I$ | R |
$\operatorname{Cosec} x$ | $R-\{(n\pi) , n \in I$ | $R-\{x:-1<x<1\}$ |
$\operatorname{Sec} x$ | $R-\{(2 n+1) \pi / 2, n \in I$ | $R-\{x:-1<x<1\}$ |
$\operatorname{Cot} x$ | $R-\{(n\pi) , n \in I$ | R |
11. Sine and Cosine Series
(a) $\quad \sin \alpha + \sin (\alpha + \beta ) + \sin (\alpha + 2\beta ) + \ldots . + \sin (\alpha + \overline {n - 1} \beta )$
$ = \dfrac{{\sin \dfrac{{{\text{n}}\beta }}{2}}}{{\sin \dfrac{\beta }{2}}}\sin \left( {\alpha + \dfrac{{{\text{n}} - 1}}{2}\beta } \right)$
(b)
${\cos \alpha + \cos (\alpha + \beta ) + \cos (\alpha + 2\beta ) + \ldots + \cos (\alpha + \overline {n - 1} \beta )}$
${ = \dfrac{{\sin \dfrac{{n\beta }}{2}}}{{\sin \dfrac{\beta }{2}}}\cos \left( {\alpha + \dfrac{{n - 1}}{2}\beta } \right)}$
12. Graphs of Trigonometric Functions
(a). ${y = \sin x,}$
${x \in R;y \in [ - 1,1]}$
(b). $y = \cos x$
$x \in R;y \in [ - 1,1]$
(c) ${y = \tan x}$
${x \in R - \left\{ {(2n + 1)\dfrac{\pi }{2};n \in Z} \right\};y \in R}$
(d) ${y = \cot x}$
${x \in R - \{ n\pi ;n \in z\} ;y \in R}$
(e) ${y = \operatorname{cosec} x}$
${x \in R - \{ n\pi ;n \in Z\} ;y \in ( - \infty , - 1] \cup [1,\infty )}$
(f) $y = \sec x\quad $
$x \in R - \left\{ {(2n + 1)\dfrac{\pi }{2};n \in Z} \right\};y \in ( - \infty , - 1] \cup [1,\infty )$
Trigonometric Equations
13. Trigonometric Equations
Trigonometric equations are equations using trigonometric functions with unknown angles.
e.g., $\cos \theta = 0,{\cos ^2}\theta - 4\cos \theta = 1$.
The value of the unknown angle that satisfies a trigonometric equation is called a solution.
e.g., $\quad \sin \theta = \dfrac{1}{{\sqrt 2 }} \Rightarrow \theta = \dfrac{\pi }{4}$ or $\theta = \dfrac{\pi }{4},\dfrac{{3\pi }}{4},\dfrac{{9\pi }}{4},\dfrac{{11\pi }}{4}, \ldots $
As a result, the trigonometric equation can have an unlimited number of solutions and is categorised as follows:
(i). Principal Solution
As we know, the values of $\sin x$ and $\cos x$ will get repeated after an interval of $2 \pi$. In the same way, the values of $\tan x$ will get repeated after an interval of $\pi$.
So, if the equation has a variable $0 \leq \mathrm{x}<2 \pi$, then the solutions will be termed as principal solutions.
Example:
Find the principal solutions of the equation $\sin x=\dfrac{\sqrt{3}}{2}$.
Solution: We know that, $\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$
Also, $\sin \dfrac{2 \pi}{3}=\sin \left(\pi-\dfrac{\pi}{3}\right)$
Now, we know that $\sin (\pi-x)=\sin x$.
Hence, $\sin \dfrac{2 \pi}{3}=\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$
Therefore, the principal solutions of $\sin x=\dfrac{\sqrt{3}}{2}$ are $\mathrm{x}=\dfrac{\pi}{3}$ and $\dfrac{2 \pi}{3}$.
(ii). General solution
A general solution is one that involves the integer 'n' and yields all trigonometric equation solutions. Also, the character ' $\mathrm{Z}$ ' is used to denote the set of integers.
Find the solution of $\sin x=-\dfrac{\sqrt{3}}{2}$.
Solution: We know that $\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$. Therefore, $\sin x=-\dfrac{\sqrt{3}}{2}=-\sin \dfrac{\pi}{3}$
Using the unit circle properties, we get $\sin x=-\sin \dfrac{\pi}{3}=\sin \left(\pi+\dfrac{\pi}{3}\right)=\sin \dfrac{4 \pi}{3}$ Hence, $\sin x=\sin \dfrac{4 \pi}{3}$
Since, we know that for any real numbers $x$ and $y, \sin x=\sin y$ implies $x=n \pi+(-1)^{n} y$, where $n \in Z$.
So, we get, $x=n \pi+(-1)^{\mathrm{n}}\left(\dfrac{4 \pi}{3}\right)$
14. Results
1. $\quad \sin \theta = 0 \Leftrightarrow \theta = \operatorname{n} \pi $
2. $\cos \theta = 0 \Leftrightarrow \theta (2{\text{n}} + 1)\dfrac{\pi }{2}$
3. $\tan \theta = 0 \Leftrightarrow \theta = {\text{n}}\pi $
4. $\sin \theta = \sin \alpha \Leftrightarrow \theta = {\text{n}}\pi + {( - 1)^{\text{n}}}\alpha $, where $\alpha \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$
5. $\cos \theta = \cos \alpha \Leftrightarrow \theta = 2{\text{n}}\pi \pm \alpha $, where $\alpha \in [0,\pi ]$
6. $\tan \theta = \tan \alpha \Leftrightarrow \theta = {\text{n}}\pi + \alpha $, where $\alpha \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$
7. ${\sin ^2}\theta = {\sin ^2}\alpha \Leftrightarrow \theta = {\text{n}}\pi \pm \alpha $.
8. ${\cos ^2}\theta = {\cos ^2}\alpha \Leftrightarrow \theta = $ n $\pi \pm \alpha $.
9. ${\tan ^2}\theta = {\tan ^2}\alpha \Leftrightarrow \theta = {\text{n}}\pi \pm \alpha $.
10. $\sin \theta = 1 \Leftrightarrow \theta = (4{\text{n}} + 1)\dfrac{\pi }{2}$
11. $\cos \theta = 1 \Leftrightarrow \theta = 2{\text{n}}\pi $
12. $\cos \theta = - 1 \Leftrightarrow \theta = (2{\text{n}} + 1)\pi $.
13. $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha \Leftrightarrow \theta = 2{\text{n}}\pi + \alpha $
Steps to Solve Trigonometric Functions:
The following are the stages of solving trigonometric equations:
Step 1: Decompose the trigonometric equation into a single trigonometric ratio, preferably the sine or cos function.
Step 2: Factor the trigonometric polynomial given in terms of the ratio.
Step 3: Write down the general solution after solving for each factor.
Note:
1. Unless otherwise stated, is treated as an integer throughout this chapter.
2. Unless the answer is required in a specific interval or range, the general solution should be supplied.
3. The angle's main value is regarded as $\alpha $. (The main value is the angle with the least numerical value.)
Trigonometric Functions Class 11 Notes Maths - Basic Subjective Questions
Section–A (1 Mark Questions)
1. If $tan\Theta =\frac{-4}{3}$ , then find $sin\Theta$.
Ans. Since, $\tan \theta=-\frac{4}{3}$ is negative, $\theta$ lies either in second quadrant or in fourth quadrant.
$$ \begin{aligned} & \because 1+\cot ^2 \theta=\operatorname{cosec}^2 \theta \\ & \Rightarrow 1+\frac{1}{\left(-\frac{4}{3}\right)^2}=\frac{1}{\sin ^2 \theta} \\ & \Rightarrow \sin ^2 \theta=\left(\frac{4}{5}\right)^2 \end{aligned} $$
Thus $\sin \theta=\frac{4}{5}$ if $\theta$ lies in the second quadrant or $\sin \theta=-\frac{4}{5}$, if $\theta$ lies in the fourth quadrant.
2. Find the greatest value of sin x cos x.
Ans. $\sin x \cos x=\frac{1}{2}(2 \sin x \cos x)=\frac{1}{2} \sin 2 x$ Greatest value of $\sin 2 x=1$
$\therefore$ Greatest value of $\dfrac{1}{2} \sin 2 x=\dfrac{1}{2} \times 1=\dfrac{1}{2}$
3. Find the degree measure of angle $\left ( \frac{\pi }{8} \right )^{c}$ radian.
Ans. We know that, $\pi$ radians $=180^{\circ}$
$$ \begin{aligned} & \Rightarrow \frac{\pi}{8} \text { radians }=22.5^{\circ} \\ & =22^{\circ}+0.5^{\circ}=22^{\circ}+30^{\prime}=22^{\circ} 30^{\prime} \end{aligned} $$
4. Evaluate: $sin \left ( \frac{-15\pi }{4} \right )$ .
Ans.
$$ \begin{aligned} & \text { 4. } \sin \left(\frac{-15 \pi}{4}\right)=\sin \left(\frac{-16 \pi+\pi}{4}\right) \\ & =\sin \left(-4 \pi+\frac{\pi}{4}\right) \\ & =\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \end{aligned} $$
5. The minute hand of a watch is 1.5 cm long. How far does it tip move in 40 minutes? (Use $\pi$ = 3.14).
Ans. Angle rotated by minute hand in 60 minutes = $2\pi$ radians
Therefore, angle rotated by minute hand in 40 minutes = $\frac{40}{60}\times2\pi =\frac{4\pi }{3}$ radians.
Hence, the required distance travelled is given by
$l=r\Theta =1.5\times\frac{4\pi }{3}cm=2\pi\;cm$
$=2\times3.14\;cm=6.28\;cm$
Section–B (2 Marks Questions)
6. Prove that cot2x cotx - cot3x cot2x - cot3x cotx = 1
Ans. We have, cot 3x=cot (2x+x)
$\Rightarrow cot\;3x=\dfrac{cot\;2x\;cot\;x -1}{cot\;2x+cot\;x}$
$\Rightarrow$ Cot 3x cot 2x + cot 3x cot x = cot 2x cot x-1
$\Rightarrow$ cot 2x cot x - cot 3x cot 2x - cot 3x xot x=1
7. Evaluate: $\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$
Ans. Given that: $\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$
Let $\Theta =15^{\circ}$
$\therefore 2\Theta =30^{\circ}$
We know that, $\therefore cos\;2\Theta =\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$
$\Rightarrow cos\;30 =\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$
$\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}=\frac{\sqrt{3}}{3}$
8. If for real value of x, $cos\Theta =x+\frac{1}{x}$ then what can you say about $\Theta$ ?
Ans. Given that: $cos\Theta =x+\frac{1}{x}$
$\Rightarrow cos\Theta =x+\frac{1}{x}$
$$ \begin{aligned} & \Rightarrow x^2+1=x \cos \theta \\ & \Rightarrow x^2-x \cos \theta+1=0 \end{aligned} $$
For real value of $x, b^2-4 a c \geq 0$
$$ \begin{aligned} & \Rightarrow(-\cos \theta)^2-4 \times 1 \times 1 \geq 0 \\ & \Rightarrow \cos ^2 \theta-4 \geq 0 \\ & \Rightarrow \cos ^2 \theta \geq 4 \\ & \Rightarrow \cos \theta \geq \pm 2 \quad[\because-1 \leq \cos \theta \leq 1] \end{aligned} $$
So, the value of $\theta$ is not possible.
9. Find the value of $sin\left ( \frac{\pi }{4}+\Theta \right )-cos \left ( \frac{\pi }{4}-\Theta \right )$ .
Ans. Given expression :
$$ \begin{aligned} & \sin \left(\frac{\pi}{4}+\theta\right)-\cos \left(\frac{\pi}{4}-\theta\right) \\ & \sin \left(\frac{\pi}{4}+\theta\right)=\sin \left(\frac{\pi}{4}\right) \cos \theta+\cos \left(\frac{\pi}{4}\right) \sin \theta \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta \\ & \cos \left(\frac{\pi}{4}-\theta\right)=\cos \left(\frac{\pi}{4}\right) \cos \theta+\sin \left(\frac{\pi}{4}\right) \sin \theta \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta \\ & \therefore \sin \left(\frac{\pi}{4}+\theta\right)-\cos \left(\frac{\pi}{4}-\theta\right) \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta-\frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta \\ & =0 \end{aligned} $$
10. Find the value of $tan\;\frac{\pi }{12}$ .
Ans. $\tan \frac{\pi}{12}=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$
$$ \begin{aligned} & =\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \cdot \tan \frac{\pi}{6}}=\frac{1-\frac{1}{\sqrt{3}}}{1+1 \cdot \frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\ & =\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3} \end{aligned} $$
11. Prove that : $tan\;225^{\circ}\;cot\;405^{\circ}+tan\;765^{\circ}\;cot\;675^{\circ}=0$
Ans.
$$ \begin{aligned} & \text { 11. LHS }= \\ & \tan 225^{\circ} \cot 405^{\circ}+\tan 765^{\circ} \cot 675^{\circ} \\ & =\tan \left(180^{\circ}+45^{\circ}\right) \cot \left(360^{\circ}+45^{\circ}\right) \\ & \quad \quad \quad \quad \tan \left(360^{\circ} \times 2+45^{\circ}\right) \cot \left(360^{\circ} \times 2-45^{\circ}\right) \\ & =\tan 45^{\circ} \cot 45^{\circ}+\tan 45^{\circ}\left[-\cot 45^{\circ}\right] \\ & =1 \times 1-1 \times 1 \\ & =0=\text { RHS } \end{aligned} $$
Hence proved.
12. For $0<x<\frac{\pi }{2}$ , show that $\sqrt{\frac{(1-cos2x)}{1+cos2x}}=tan\;x$
Ans.
$$ \begin{aligned} & \text { LHS }=\sqrt{\frac{(1-\cos 2 x)}{(1+\cos 2 x)}} \\ & =\sqrt{\frac{1-\left(1-2 \sin ^2 x\right)}{1+\left(2 \cos ^2 x-1\right)}}=\sqrt{\frac{2 \sin ^2 x}{2 \cos ^2 x}} \\ & =|\tan x|=\tan x \quad\left\{\because 0<x<\frac{\pi}{2}\right\} \\ & =\text { RHS } \end{aligned} $$
13. Prove that: $\frac{cos(2\pi +x)cosec(2\pi +x)tan\left ( \frac{\pi }{2}+x \right )}{sec\left ( \frac{\pi }{2}+x \right )cos\;x\;cot(\pi +x)}=1$
Ans. LHS $=$
$$\cos (2 \pi+x) \operatorname{cosec}(2 \pi+x) \tan \left(\frac{\pi}{2}+x\right)$$
$$ \begin{aligned} & \sec \left(\frac{\pi}{2}+x\right) \cos x \cot (\pi+x) \\ \Rightarrow & \frac{-\cos x \operatorname{cosec} x \cot x}{-\operatorname{cosec} x \cos x \cot x}=1 \end{aligned} $$
Hence proved.
Important Formulas of Class 11 Chapter 3 you shouldn’t Miss!
Basic Trigonometric Identities:
$\sin^2 \theta + \cos^2 \theta = 1$
$1 + \tan^2 \theta = \sec^2 \theta$
$1 + \cot^2 \theta = \csc^2 \theta$
Angle Sum and Difference Formulas:
$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
Double Angle Formulas:
$\sin 2\theta = 2 \sin \theta \cos \theta$
$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$
Product-to-Sum Formulas:
$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$
$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$
$\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$
Inverse Trigonometric Functions:
$\sin^{-1} (\sin \theta) = \theta, \quad \text{for} \ -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
$\cos^{-1} (\cos \theta) = \theta, \quad \text{for} \ 0 \leq \theta \leq \pi
$\tan^{-1} (\tan \theta) = \theta, \quad \text{for} \ -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
Importance of Trigonometric Functions Class 11 Notes
The importance of Trigonometric Function Class 11 notes lies in their role in helping students build a strong foundation in trigonometry, which is essential for advanced mathematical studies. Here’s why these notes are crucial:
Clear Conceptual Understanding: The notes simplify complex trigonometric concepts, making it easier for students to grasp fundamental ideas like identities, functions, and equations.
Exam Preparation: Well-structured notes provide a comprehensive review of key formulas, theorems, and problem-solving techniques, which are vital for scoring well in exams.
Application in Higher Studies: Trigonometry forms the basis for various topics in Class 12 and competitive exams like JEE. Mastery of this chapter ensures a smoother transition to advanced topics.
Problem-solving Skills: These notes offer step-by-step solutions to typical problems, helping students develop strong analytical and problem-solving abilities.
Quick Revision: Concise and organised, these notes are perfect for quick revision before exams, ensuring students can recall essential concepts and formulas easily.
Tips for Learning the Class 11 Maths Chapter 3 Trigonometric Functions
Here are some helpful tips for learning the Class 11 Maths Chapter 3 Trigonometric Functions:
Master the Basics: Ensure you have a strong understanding of basic trigonometric ratios and identities from earlier classes. This foundation is crucial for tackling more complex concepts in this chapter.
Memorise Key Formulas: Focus on memorising important trigonometric identities, angle sum and difference formulas, and double angle formulas. These are frequently used in solving problems and are essential for success.
Practice Regularly: Trigonometry requires consistent practice. Work through a variety of problems from your textbook and additional reference materials to become comfortable with different types of questions.
Visualise with Unit Circle: Use the unit circle to visualise the relationships between different trigonometric functions. This can help in understanding how angles and functions are related.
Work on Inverse Functions: Spend extra time understanding inverse trigonometric functions, as they can be tricky. Practice converting between trigonometric functions and their inverses.
Conclusion
Mastering the concepts in Class 11 Maths Chapter 3, Trigonometric Functions, is essential for building a solid foundation in mathematics. By focusing on understanding key formulas, practising regularly, and applying the tips provided, students can confidently tackle trigonometric problems and excel in their exams. Regular revision and consistent practice are key to success in this crucial chapter.
Related Study Materials for Class 11 Maths Chapter 3 Trigonometric Functions
Students can also download additional study materials provided by Vedantu for
Class 11 Maths Trigonometric Functions.
S. No | Trigonometric Functions Related to Other Study Materials |
1. | |
2. | |
3. |
Revision Notes Links for Class 11 Maths
S. No | NCERT Solutions Class 11 Maths All Chapters |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Important Study Materials for Class 11 Maths
S. No | Study Material you can Refer to for CBSE Class 11 Maths |
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. |
FAQs on Trigonometric Functions Class 11 Notes: CBSE Maths Chapter 3
1. What are the key topics covered in the trigonometric functions Class 11 notes?
The trigonometric functions Class 11 notes cover essential topics such as trigonometric identities, angle sum and difference formulas, double angle formulas, and inverse trigonometric functions.
2. How can the trigonometry Class 11 notes help in exam preparation?
Trigonometry Class 11 notes provide clear explanations of concepts, important formulas, and solved examples, making it easier for students to understand and revise the material, thereby enhancing their exam preparation.
3. Are the trigonometric functions Class 11 PDF notes sufficient for board exam preparation?
Yes, trigonometric functions Class 11 PDF notes are designed to cover the entire syllabus comprehensively, making them an excellent resource for board exam preparation.
4. What is the importance of studying trigonometric functions in Class 11?
Studying trigonometric functions in Class 11 is crucial as it lays the groundwork for more advanced topics in Class 12 and competitive exams, and helps in developing problem-solving skills in mathematics.
5. How can trigonometry Class 11 notes PDF be used for quick revision?
Trigonometry Class 11 notes PDF are concise and well-organized, making them perfect for quick revision before exams. Students can easily review key formulas and concepts.
6. Do trigonometric functions Class 11 notes include solved examples?
Yes, trigonometric functions Class 11 notes typically include solved examples that demonstrate how to apply formulas and concepts to solve various types of problems.
7. Can I use trigonometry Class 11 notes for competitive exam preparation?
The trigonometry Class 11 notes are aligned with the syllabus of many competitive exams, providing a strong foundation for solving trigonometry-related questions in those exams.
8. How often should I revise using trigonometric functions Class 11 PDF notes?
Regular revision using trigonometric functions Class 11 PDF notes is recommended to keep the concepts and formulas fresh in your memory, especially as you approach exams.
9. Where can I download high-quality trigonometric functions Class 11 PDF notes?
High-quality trigonometric functions Class 11 PDF notes can be downloaded from reputable educational platforms like Vedantu, which provide comprehensive study materials for free.