Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 12 Maths Chapter-2 (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 12 Maths - Inverse Trigonometric Functions - Free PDF Download

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions solved by expert Maths teachers on Vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 2 - Inverse Trigonometric Functions Exercise questions with solutions to help you to revise complete syllabus and score more marks in your Examinations.

Students will gain a full understanding of the subjects covered in their Class by referring to the NCERT Exemplar textbooks for various Classes subject-wise. Additionally, students can use NCERT Exemplar Solutions to discover how to do the Exercise questions in each Chapter. All of these answers are developed by subject matter specialists using the most recent CBSE patterns.

In NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)  Students will learn about the properties and principles of Inverse Trigonometry Functions in this Chapter. They'll also learn about the limitations of Trigonometric Functions' ranges and domains. They will also use pictorial representations to document their actions. Students who want to understand how to solve these Exercise questions correctly can get the NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) solutions PDF from the link on the Vedantus site.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Exemplar Solutions for Class 11 Mathematics Chapter 2 - Inverse Trigonometric Functions

EXAMPLES:

Solved Examples Short Answer Questions:

1: Find the principal value of $co{s^{ - 1}}x$, for $x = \dfrac{{\sqrt 3 }}{2}$.

Ans:  Given: $x = \dfrac{{\sqrt 3 }}{2}$

The value of the inverse trigonometric function which lies in the range of the principal branch is its principal value.

Assume ${\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \theta$, then $\cos \theta  = \dfrac{{\sqrt 3 }}{2}$.

Considering principal branch, $\theta  \in [0,\pi ]$. 

$\because \dfrac{{\sqrt 3 }}{2} > 0,\theta$ being in the first quadrant

Hence,${\cos ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right) = \dfrac{\pi }{6}$.


Example 2: Evaluate $ta{n^{ - 1}}\left( {sin\left( {\dfrac{{ - \pi }}{2}} \right)} \right).$

Ans:  Given: ${\tan ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right).$

Using the property of trigonometric inverse, ${\sin ^{ - 1}}( - x) =  - {\sin ^{ - 1}}x$

$\Rightarrow {\tan ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right)$

$\Rightarrow {\tan ^{ - 1}}\left( { - \sin \left( {\dfrac{\pi }{2}} \right)} \right)$

$\Rightarrow {\tan ^{ - 1}}( - 1) =  - \dfrac{\pi }{4}$ 


Example 3: Find the value of $co{s^{ - 1}}\left( {cos\dfrac{{13\pi }}{6}} \right)$.

Ans:  Given: ${\cos ^{ - 1}}\left( {\cos \dfrac{{13\pi }}{6}} \right)$

The value of the inverse trigonometric function which lies in the range of principal branch is its principal value.

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{13\pi }}{6}} \right)$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \left( {2\pi  + \dfrac{\pi }{6}} \right)} \right){\text{(}}\because {\text{cos}}\left( {2\pi  + \theta } \right){\text{ }} = {\text{ cos}}\theta )$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{6}} \right) = \dfrac{\pi }{6}\left( {\because {\text{co}}{{\text{s}}^{ - 1}}\left( {{\text{cos }}\theta {\text{ }}} \right) = \theta } \right)$ 

$= \dfrac{\pi }{6}$.


Example 4: Find the value of $ta{n^{ - 1}}\left( {tan\dfrac{{9\pi }}{8}} \right)$.

Ans: Given: ${\tan ^{ - 1}}\left( {\tan \dfrac{{9\pi }}{8}} \right)$

The value of the inverse trigonometric function which lies in the range of principal branch is its principal value.

$\Rightarrow {\tan ^{ - 1}}\left( {\tan \dfrac{{9\pi }}{8}} \right)$

$\Rightarrow {\tan ^{ - 1}}\tan \left( {\pi  + \dfrac{\pi }{8}} \right)\left( {\because \tan \left( {\pi  + \theta } \right) = {\text{tan}}\theta } \right)$

$\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{8}} \right)} \right) = \dfrac{\pi }{8}\left( {\because {{\tan }^{ - 1}}\left( {{\text{tan}}\theta } \right) = \theta } \right)$ 


Example 5: Evaluate $tan\left( {ta{n^{ - 1}}( - 4)} \right)$

Ans:  Given: $\tan \left( {{{\tan }^{ - 1}}( - 4)} \right)$

 Using the property of trigonometric inverse, ${\tan ^{ - 1}}( - x) =  - {\tan ^{ - 1}}x$

  $\because \tan \left( {{{\tan }^{ - 1}}x} \right) = x,\forall x \in {\text{R}},$

  $\tan \left( {{{\tan }^{ - 1}}( - 4)} \right) =  - 4$ 


Example 6: Evaluate: $ta{n^{ - 1}}\sqrt 3  - se{c^{ - 1}}( - 2)$.

Ans:  Given: ${\tan ^{ - 1}}\sqrt 3  - {\sec ^{ - 1}}( - 2)$

Using the property of trigonometric inverse, ${\sec ^{ - 1}}( - x) = \pi  - {\sec ^{ - 1}}x$


Example 7: Evaluate: $si{n^{ - 1}}\left[ {cos\left( {si{n^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \right)} \right]$.

Ans:  Given ${\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \right)} \right]$

The value of the inverse trigonometric function which lies in the range of the principal branch is its principal value.

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \right)} \right]$

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {\dfrac{\pi }{3}} \right)} \right]$

$\Rightarrow {\sin ^{ - 1}}\left[ {\dfrac{1}{2}} \right] = \dfrac{\pi }{6}$ 


Example 8: Prove that $tan\left( {co{t^{ - 1}}x} \right) = cot\left( {ta{n^{ - 1}}x} \right)$. State with reason whether the equality is valid for all values of $x$

Ans:  Given $\tan \left( {{{\cot }^{ - 1}}x} \right) = \cot \left( {{{\tan }^{ - 1}}x} \right)$

Using the property of trigonometric inverse,  $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$

Assume ${\cot ^{ - 1}}x = \theta$. $\therefore$$\cot \theta  = x$

$\Rightarrow \tan \left( {\dfrac{\pi }{2} - \theta } \right) = x$

$\Rightarrow {\tan ^{ - 1}}x = \dfrac{\pi }{2} - \theta$ 

So,

  $\tan \left( {{{\cot }^{ - 1}}x} \right) = \tan \theta$

$\Rightarrow \cot \left( {\dfrac{\pi }{2} - \theta } \right)$

$\Rightarrow \cot \left( {\dfrac{\pi }{2} - {{\cot }^{ - 1}}x} \right)$

   $= \cot \left( {{{\tan }^{ - 1}}x} \right)$ 

The equality is valid for all values of $x$ since ${\tan ^{ - 1}}x$ and ${\cot ^{ - 1}}x$ is true for$x \in {\mathbf{R}}$.


Example 9: Find the value of $sec\left( {ta{n^{ - 1}}\dfrac{y}{2}} \right)$

Ans:  Given: $\sec \left( {{{\tan }^{ - 1}}\dfrac{y}{2}} \right)$

Assume${\tan ^{ - 1}}\dfrac{y}{2} = \theta$, where$\theta  \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$. 

So, $\tan \theta  = \dfrac{y}{2}$

$\Rightarrow \sec \theta  = \dfrac{{\sqrt {4 + {y^2}} }}{2}$

$\Rightarrow \sec \left( {{{\tan }^{ - 1}}\dfrac{y}{2}} \right) = \sec \theta$

$= \dfrac{{\sqrt {4 + {y^2}} }}{2}$ 


Example 10: Find value of $tan\left( {co{s^{ - 1}}x} \right)$ and hence evaluate $tan\left( {co{s^{ - 1}}\dfrac{8}{{17}}} \right)$.

Ans:  Given: $\tan \left( {{{\cos }^{ - 1}}x} \right)$$,\tan \left( {{{\cos }^{ - 1}}\dfrac{8}{{17}}} \right)$

Using the property of trigonometric inverse,  $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$

Assume${\cos ^{ - 1}}x = \theta$, $\therefore$$\cos \theta  = x$, where $\theta  \in [0,\pi ]$

$\Rightarrow \tan \theta  = \dfrac{{\sqrt {1 - {x^2}} }}{x}$

$\therefore \tan \left( {{{\cos }^{ - 1}}\dfrac{8}{{17}}} \right)$ 

$\Rightarrow \tan \left( {{{\cos }^{ - 1}}x} \right)$

$\Rightarrow \tan \theta  = \dfrac{{\sqrt {1 - {{\cos }^2}\theta } }}{{\cos \theta }}$

$= \dfrac{{\sqrt {1 - {{\left( {\dfrac{8}{{17}}} \right)}^2}} }}{{\dfrac{8}{{17}}}} = \dfrac{{15}}{8}$


Example 11: Find the value of $sin\left[ {2co{t^{ - 1}}\left( {\dfrac{{ - 5}}{{12}}} \right)} \right]$

Ans:  Given: $\sin \left[ {2{{\cot }^{ - 1}}\left( {\dfrac{{ - 5}}{{12}}} \right)} \right]$

Using the property of trigonometric inverse.

Assume${\cot ^{ - 1}}\left( {\dfrac{{ - 5}}{{12}}} \right) = y.$ Then $\cot y = \dfrac{{ - 5}}{{12}}$

Now,

$\sin \left[ {2{{\cot }^{ - 1}}\left( {\dfrac{{ - 5}}{{12}}} \right)} \right] = \sin 2y$

Since,$\cot y < 0$, so $\left[ {y \in \left( {\dfrac{\pi }{2},\pi } \right)} \right]$

$\Rightarrow 2\sin y\cos y = 2\left( {\dfrac{{12}}{{13}}} \right)\left( {\dfrac{{ - 5}}{{13}}} \right)$

$= \dfrac{{ - 120}}{{169}}$ 


Example 12: Evaluate $cos\left[ {si{n^{ - 1}}\dfrac{1}{4} + se{c^{ - 1}}\dfrac{4}{3}} \right]$

Ans:  Given: $\cos \left[ {{{\sin }^{ - 1}}\dfrac{1}{4} + {{\sec }^{ - 1}}\dfrac{4}{3}} \right]$

Using the property of trigonometric inverse ${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\quad :\quad x \in [ - 1,1]$

$\Rightarrow \cos \left[ {{{\sin }^{ - 1}}\dfrac{1}{4} + {{\sec }^{ - 1}}\dfrac{4}{3}} \right]$

$\Rightarrow \cos \left[ {{{\sin }^{ - 1}}\dfrac{1}{4} + {{\cos }^{ - 1}}\dfrac{3}{4}} \right]$

$\Rightarrow \cos \left( {{{\sin }^{ - 1}}\dfrac{1}{4}} \right)\cos \left( {{{\cos }^{ - 1}}\dfrac{3}{4}} \right) - \sin \left( {{{\sin }^{ - 1}}\dfrac{1}{4}} \right)\sin \left( {{{\cos }^{ - 1}}\dfrac{3}{4}} \right)$

$\Rightarrow \dfrac{3}{4}\sqrt {1 - {{\left( {\dfrac{1}{4}} \right)}^2}}  - \dfrac{1}{4}\sqrt {1 - {{\left( {\dfrac{3}{4}} \right)}^2}}$

$\Rightarrow \dfrac{3}{4}\dfrac{{\sqrt {15} }}{4} - \dfrac{1}{4}\dfrac{{\sqrt 7 }}{4} = \dfrac{{3\sqrt {15}  - \sqrt 7 }}{{16}}$ 


Example 13: Prove that $2si{n^{ - 1}}\dfrac{3}{5} - ta{n^{ - 1}}\dfrac{{17}}{{31}} = \dfrac{\pi }{4}$

Ans:  Given: $2{\sin ^{ - 1}}\dfrac{3}{5} - {\tan ^{ - 1}}\dfrac{{17}}{{31}} = \dfrac{\pi }{4}$

Using the property of trigonometric inverse, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Assume${\sin ^{ - 1}}\dfrac{3}{5} = \theta$, then $\sin \theta  = \dfrac{3}{5}$, where $\theta  \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

  $\therefore \tan \theta  = \dfrac{3}{4}$

$\Rightarrow \theta  = {\tan ^{ - 1}}\dfrac{3}{4}$ 

Therefore,

$\Rightarrow 2{\sin ^{ - 1}}\dfrac{3}{5} - {\tan ^{ - 1}}\dfrac{{17}}{{31}}$

$\Rightarrow 2\theta  - {\tan ^{ - 1}}\dfrac{{17}}{{31}}$

$\Rightarrow 2{\tan ^{ - 1}}\dfrac{3}{4} - {\tan ^{ - 1}}\dfrac{{17}}{{31}}$

$\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2 \cdot \dfrac{3}{4}}}{{1 - \dfrac{9}{{16}}}}} \right) - {\tan ^{ - 1}}\dfrac{{17}}{{31}}$

$\Rightarrow {\tan ^{ - 1}}\dfrac{{24}}{7} - {\tan ^{ - 1}}\dfrac{{17}}{{31}}$

$\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{24}}{7} - \dfrac{{17}}{{31}}}}{{1 + \dfrac{{24}}{7} \cdot \dfrac{{17}}{{31}}}}} \right) = \dfrac{\pi }{4}$ 


Example 14: Prove that $co{t^{ - 1}}7 + co{t^{ - 1}}8 + co{t^{ - 1}}18 = co{t^{ - 1}}3$

Ans:  Given: ${\cot ^{ - 1}}7 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 = {\cot ^{ - 1}}3$

Using the property of trigonometric inverse \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x},{\text{ if }}x > 0\]

\[ \Rightarrow {\cot ^{ - 1}}7 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}1\]

\[ \Rightarrow {\tan ^{ - 1}}\dfrac{1}{7} + {\tan ^{ - 1}}\dfrac{1}{8} + {\tan ^{ - 1}}\dfrac{1}{{18}}\]

Since, \[x \cdot y = \dfrac{1}{7} \cdot \dfrac{1}{8} < 1\]

$= {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{7} + \dfrac{1}{8}}}{{1 - \dfrac{1}{7} \times \dfrac{1}{8}}}} \right) + {\tan ^{ - 1}}\dfrac{1}{{18}}\quad$

Since $xy < 1$

$\Rightarrow {\tan ^{ - 1}}\dfrac{3}{{11}} + {\tan ^{ - 1}}\dfrac{1}{{18}}$

$\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{3}{{11}} + \dfrac{1}{{18}}}}{{1 - \dfrac{3}{{11}} \times \dfrac{1}{{18}}}}} \right)$

$\Rightarrow {\tan ^{ - 1}}\dfrac{{65}}{{195}}$

$\Rightarrow {\tan ^{ - 1}}\dfrac{1}{3} = {\cot ^{ - 1}}3$ 


Example 15: Which is greater, tan 1 or $ta{n^{ - 1}}1$ ?


seo images


Ans:  Given:  figure

The value of the inverse trigonometric function which lies in the range of the principal branch is its principal value.

From Fig., tan $x$ is an increasing function in the interval$\left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)$,

Since,$1 > \dfrac{\pi }{4} \Rightarrow \tan 1 > \tan \dfrac{\pi }{4}$. 

$\Rightarrow \tan 1 > 1$

$\Rightarrow \quad \tan 1 > 1 > \dfrac{\pi }{4}$

$\Rightarrow \tan 1 > 1 > {\tan ^{ - 1}}(1)$


Example 16: Find the value $sin\left( {2ta{n^{ - 1}}\dfrac{2}{3}} \right) + cos\left( {ta{n^{ - 1}}\sqrt 3 } \right)$

Ans:  Given: $\sin \left( {2{{\tan }^{ - 1}}\dfrac{2}{3}} \right) + \cos \left( {{{\tan }^{ - 1}}\sqrt 3 } \right)$

Using the trigonometric inverse function, $y = {\tan ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Assume ${\tan ^{ - 1}}\dfrac{2}{3} = x$ and ${\tan ^{ - 1}}\sqrt 3  = y$

$\Rightarrow \tan x = \dfrac{2}{3}$ And $\tan y = \sqrt 3$

Therefore,

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\dfrac{2}{3}} \right) + \cos \left( {{{\tan }^{ - 1}}\sqrt 3 } \right)$

$\Rightarrow \sin (2x) + \cos y$

$\Rightarrow \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}} + \dfrac{1}{{\sqrt {1 + {{\tan }^2}y} }}$

$\Rightarrow \dfrac{{2 \cdot \dfrac{2}{3}}}{{1 + \dfrac{4}{9}}} + \dfrac{1}{{1 + \sqrt {{{(\sqrt 3 )}^2}} }}$

$\Rightarrow \dfrac{{12}}{{13}} + \dfrac{1}{2} = \dfrac{{37}}{{26}}$ 


Example 17: Solve for $x$$ta{n^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right) = \dfrac{1}{2}ta{n^{ - 1}}x,x > 0$

Ans:  Given: ${\tan ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right) = \dfrac{1}{2}{\tan ^{ - 1}}x,x > 0$

Using the trigonometric inverse function, $y = {\tan ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

  ${\tan ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right) = \dfrac{1}{2}{\tan ^{ - 1}}x$

$\Rightarrow 2{\tan ^{ - 1}}\left( {\dfrac{{1 - x}}{{1 + x}}} \right) = {\tan ^{ - 1}}x$ 

$\Rightarrow 2\left[ {{{\tan }^{ - 1}}1 - {{\tan }^{ - 1}}x} \right] = {\tan ^{ - 1}}x$

$\Rightarrow 2\left( {\dfrac{\pi }{4}} \right) = 3{\tan ^{ - 1}}x$ 

$\Rightarrow \dfrac{\pi }{6} = {\tan ^{ - 1}}x$

$\Rightarrow x = \dfrac{1}{{\sqrt 3 }}$ 


Example 18: Find the values of $x$ which satisfy the equation $si{n^{ - 1}}x + si{n^{ - 1}}(1 - x) = co{s^{ - 1}}x .$

Ans:  Given: ${\sin ^{ - 1}}x + {\sin ^{ - 1}}(1 - x) = {\cos ^{ - 1}}x{\text{ }}{\text{. }}$

Using the trigonometric inverse function, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Taking the sin on both sides of ${\sin ^{ - 1}}x + {\sin ^{ - 1}}(1 - x) = {\cos ^{ - 1}}x{\text{ }}{\text{. }}$

$\sin \left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}(1 - x)} \right) = \sin \left( {{{\cos }^{ - 1}}x} \right)$

$\Rightarrow \sin \left( {{{\sin }^{ - 1}}x} \right)\cos \left( {{{\sin }^{ - 1}}(1 - x)} \right) + \cos \left( {{{\sin }^{ - 1}}x} \right)\sin \left( {{{\sin }^{ - 1}}(1 - x)} \right) = \sin \left( {{{\cos }^{ - 1}}x} \right)$

$\Rightarrow x\sqrt {1 - {{(1 - x)}^2}}  + (1 - x)\sqrt {1 - {x^2}}  = \sqrt {1 - {x^2}}$

$\Rightarrow x\sqrt {2x - {x^2}}  + \sqrt {1 - {x^2}} (1 - x - 1) = 0$

$\Rightarrow x\left( {\sqrt {2x - {x^2}}  - \sqrt {1 - {x^2}} } \right) = 0$

$\Rightarrow x = 0$or$\quad 2x - {x^2} = 1 - {x^2}$

$\therefore x = 0$or$\quad x = \dfrac{1}{2}$.


Example 19: Solve the equation $si{n^{ - 1}}6x + si{n^{ - 1}}6\sqrt 3 x =  - \dfrac{\pi }{2}$

Ans:  Given: ${\sin ^{ - 1}}6x + {\sin ^{ - 1}}6\sqrt 3 x =  - \dfrac{\pi }{2}$

Using the trigonometric inverse function, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

${\text{ }}{\sin ^{ - 1}}6x =  - \dfrac{\pi }{2} - {\sin ^{ - 1}}6\sqrt 3 x$

$\Rightarrow \quad \sin \left( {{{\sin }^{ - 1}}6x} \right) = \sin \left( { - \dfrac{\pi }{2} - {{\sin }^{ - 1}}6\sqrt 3 x} \right)$

$\Rightarrow \quad 6x =  - \cos \left( {{{\sin }^{ - 1}}6\sqrt 3 x} \right)$

$\Rightarrow \quad 6x =  - \sqrt {1 - 108{x^2}}$.

Squaring, 

$\Rightarrow 36{x^2} = 1 - 108{x^2}$

$\Rightarrow 144{x^2} = 1$

$\Rightarrow x =  \pm \dfrac{1}{{12}}$ 

Here, $x =  - \dfrac{1}{{12}}$ is the only root of the equation as $x = \dfrac{1}{{12}}$ does not satisfy it.


Example 20: Show that $2ta{n^{ - 1}}\left\{ {tan\dfrac{\alpha }{2} \times tan\left( {\dfrac{\pi }{4} - \dfrac{\beta }{2}} \right)} \right\} = ta{n^{ - 1}}\dfrac{{sin\alpha cos\beta }}{{cos\alpha  + sin\beta }}$

Ans:  Given: $2{\tan ^{ - 1}}\left\{ {\tan \dfrac{\alpha }{2} \cdot \tan \left( {\dfrac{\pi }{4} - \dfrac{\beta }{2}} \right)} \right\} = {\tan ^{ - 1}}\dfrac{{\sin \alpha \cos \beta }}{{\cos \alpha  + \sin \beta }}$

Using the property of trigonometric inverse $\left( {2{{\tan }^{ - 1}}x = {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right)$

Taking L.H.S. $= {\tan ^{ - 1}}\dfrac{{2\tan \dfrac{\alpha }{2}\tan \left( {\dfrac{\pi }{4} - \dfrac{\beta }{2}} \right)}}{{1 - {{\tan }^2}\dfrac{\alpha }{2}{{\tan }^2}\left( {\dfrac{\pi }{4} - \dfrac{\beta }{2}} \right)}}$

$= {\tan ^{ - 1}}\dfrac{{2\tan \dfrac{\alpha }{2} \cdot \left( {1 - {{\tan }^2}\dfrac{\beta }{2}} \right)}}{{{{\left( {1 + \tan \dfrac{\beta }{2}} \right)}^2} - {{\tan }^2}\dfrac{\alpha }{2}{{\left( {1 - \tan \dfrac{\beta }{2}} \right)}^2}}}$

$= {\tan ^{ - 1}}\dfrac{{2\tan \dfrac{\alpha }{2}\left( {1 - {{\tan }^2}\dfrac{\beta }{2}} \right)}}{{\left( {1 + {{\tan }^2}\dfrac{\beta }{2}} \right)\left( {1 - {{\tan }^2}\dfrac{\alpha }{2}} \right) + 2\tan \dfrac{\beta }{2}\left( {1 + {{\tan }^2}\dfrac{\alpha }{2}} \right)}}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}\dfrac{{1 - {{\tan }^2}\dfrac{\beta }{2}}}{{1 + {{\tan }^2}\dfrac{\beta }{2}}}}}{{\dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} + \dfrac{{2\tan \dfrac{\beta }{2}}}{{1 + {{\tan }^2}\dfrac{\beta }{2}}}}}$

$= {\tan ^{ - 1}}\left( {\dfrac{{\sin \alpha \cos \beta }}{{\cos \alpha  + \sin \beta }}} \right)$

$= {\text{R}}.{\text{H}}.{\text{S}}.$ 

L.H.S=R.H.S 

Hence, proved.


Objective Type Questions Choose the Correct Answer from the Given Four Options in Each of the Examples 21 to 41

Example 21: Which of the following corresponds to the principal value branch of ${\tan ^{ - 1}}$?

(A) $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

(B) $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$

(C) $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right) - \left\{ 0 \right\}$

(D) $\left( {0,\pi } \right)$

Ans: Correct answer is option A.

Given: ${\tan ^{ - 1}}$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

The principal value branch of ${\tan ^{ - 1}}$ is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$.

Hence, $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$ is the correct answer.


22. The principal value branch of $se{c^{ - 1}}$ is

(A) $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] - \left\{ 0 \right\}$

(B) $\left[ {0,\pi } \right] - \left\{ {\dfrac{\pi }{2}} \right\}$

(C) $\left( {0,\pi } \right)$

(D) $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

Ans:  Correct answer is option B.

Given: ${\sec ^{ - 1}}$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

The principal value branch of ${\sec ^{ - 1}}$ is $\left[ {0,\pi } \right] - \left\{ {\dfrac{\pi }{2}} \right\}$.

Hence, $\left[ {0,\pi } \right] - \left\{ {\dfrac{\pi }{2}} \right\}$ is the correct answer.


23. One branch of $co{s^{ - 1}}$ other than the principal value branch corresponds to

(A) $\left[ {\dfrac{\pi }{2},\dfrac{{3\pi }}{2}} \right]$

(B) $\left[ {\pi ,2\pi } \right] - \left\{ {\dfrac{{3\pi }}{2}} \right\}$

(C) $\left( {0,\pi } \right)$

(D) $\left[ {2\pi ,3\pi } \right]$

Ans: Correct answer is option D.

Given: ${\cos ^{ - 1}}$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

One branch of ${\cos ^{ - 1}}$ other than the principal value branch corresponds to is $\left[ {2\pi ,3\pi } \right]$.

Hence, $\left[ {2\pi ,3\pi } \right]$ is the correct answer.


24. The value of $si{n^{ - 1}}\left( {cos\left( {\dfrac{{43\pi }}{5}} \right)} \right)$ is

(A) $\dfrac{{3\pi }}{5}$

(B) $\dfrac{{ - 7\pi }}{5}$

(C) $\dfrac{\pi }{{10}}$

(D) $- \dfrac{\pi }{{10}}$

Ans:  Correct answer is option D.

Given: ${\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{40\pi  + 3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {8\pi  + \dfrac{{3\pi }}{5}} \right)} \right)$

As $\left( {8\pi  + \theta } \right)$ is in the first quadrant, $\cos $will be positive.

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{\pi }{2} - \dfrac{{3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - \dfrac{\pi }{{10}}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) =  - \dfrac{\pi }{{10}}$

Hence, ${\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{43\pi }}{5}} \right)} \right) =  - \dfrac{\pi }{{10}}$.


25. The principal value of the expression $co{s^{ - 1}}\left[ {cos\left( { - 68{0^o}} \right)} \right]$ is

(A) $\dfrac{{2\pi }}{9}$

(B) $\dfrac{{ - 2\pi }}{9}$

(C) $\dfrac{{34\pi }}{9}$

(D) $\dfrac{\pi }{9}$

Ans: Correct answer is option A.

Given: ${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right]$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = {\cos ^{ - 1}}\left[ {\cos \left( {{{720}^ \circ } - {{40}^ \circ }} \right)} \right]$

${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = {\cos ^{ - 1}}\left[ {\cos \left( { - {{40}^ \circ }} \right)} \right]$

As $\cos ( - \theta ) = \cos \theta$,

${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = {\cos ^{ - 1}}\left[ {\cos \left( {{{40}^ \circ }} \right)} \right]$

${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = {40^ \circ }$

${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = \dfrac{{2\pi }}{9}$

Hence, ${\cos ^{ - 1}}\left[ {\cos \left( { - {{680}^ \circ }} \right)} \right] = \dfrac{{2\pi }}{9}$.


26. The value of $cot\left( {si{n^{ - 1}}x} \right)$ is

(A) $\dfrac{{\sqrt {1 + {x^2}} }}{x}$

(B) $\dfrac{x}{{\sqrt {1 + {x^2}} }}$

(C) $\dfrac{1}{x}$

(D) $\dfrac{{\sqrt {1 - {x^2}} }}{x}$

Ans:  Correct answer is option D.

Given: $\cot \left( {{{\sin }^{ - 1}}x} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Let ${\sin ^{ - 1}}x = \theta$

$\Rightarrow \sin \theta  = x$

$\Rightarrow {\text{cosec}}\theta  = \dfrac{1}{x}$

$\Rightarrow {\text{cose}}{{\text{c}}^2}\theta  = \dfrac{1}{{{x^2}}}$

As \[{\text{cose}}{{\text{c}}^2}\theta  - {\cot ^2}\theta  = 1\],

$\Rightarrow 1 + {\text{co}}{{\text{t}}^2}\theta  = \dfrac{1}{{{x^2}}}$

$\Rightarrow {\text{co}}{{\text{t}}^2}\theta  = \dfrac{1}{{{x^2}}} - 1$

$\Rightarrow {\text{co}}{{\text{t}}^2}\theta  = \dfrac{{1 - {x^2}}}{{{x^2}}}$

$\Rightarrow {\text{cot}}\theta  = \sqrt {\dfrac{{1 - {x^2}}}{{{x^2}}}}$

$\Rightarrow {\text{cot}}\theta  = \dfrac{{\sqrt {1 - {x^2}} }}{x}$

$\Rightarrow \cot \left( {{{\sin }^{ - 1}}x} \right) = \dfrac{{\sqrt {1 - {x^2}} }}{x}$

Hence, $\cot \left( {{{\sin }^{ - 1}}x} \right) = \dfrac{{\sqrt {1 - {x^2}} }}{x}$.


27. If $ta{n^{ - 1}}x = \dfrac{\pi }{{10}}$ for some $x\in R,$ then the value of $co{t^{ - 1}}x$ is

(A) $\dfrac{\pi }{5}$

(B) $\dfrac{{2\pi }}{5}$

(C) $\dfrac{{3\pi }}{5}$

(D) $\dfrac{{4\pi }}{5}$

Ans:  Correct answer is option B.

Given: ${\tan ^{ - 1}}x = \dfrac{\pi }{{10}}$ for some $x \in R.$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

As ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}$,

$\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - \dfrac{\pi }{{10}}$

$\Rightarrow {\cot ^{ - 1}}x = \dfrac{{2\pi }}{5}$

Hence, ${\cot ^{ - 1}}x = \dfrac{{2\pi }}{5}$.


28. The domain of$si{n^{ - 1}}2x$ is

(A) $\left[ {0,1} \right]$

(B) $\left[ { - 1,1} \right]$

(C) $\left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]$

(D) $\left[ { - 2,2} \right]$

Ans: Correct answer is option C.

Given: ${\sin ^{ - 1}}2x$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Let ${\sin ^{ - 1}}2x = \theta$

$\Rightarrow 2x = \sin \theta$

As $- 1 \leqslant \sin \theta  \leqslant 1$,

$\Rightarrow  - 1 \leqslant 2x \leqslant 1$

$\Rightarrow  - \dfrac{1}{2} \leqslant x \leqslant \dfrac{1}{2}$

Hence, $\left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]$ is the domain of ${\sin ^{ - 1}}2x$.


29. The principal value of $si{n^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)$ is

(A) $\dfrac{{ - 2\pi }}{3}$

(B) $\dfrac{{ - \pi }}{3}$

(C) $\dfrac{{4\pi }}{3}$

(D) $\dfrac{{5\pi }}{3}$

Ans: Correct answer is option B.

Given: ${\sin ^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\sin ^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) = {\sin ^{ - 1}}\left( { - \sin \dfrac{\pi }{3}} \right)$

${\sin ^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) =  - {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{3}} \right)$

${\sin ^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) =  - \dfrac{\pi }{3}$

Hence, ${\sin ^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) =  - \dfrac{\pi }{3}$.


30. The greatest and least values of ${\left( {si{n^{ - 1}}x} \right)^2} + {\left( {co{s^{ - 1}}x} \right)^2}$ are respectively

(A) $\dfrac{{5{\pi ^2}}}{4} \text{ and } \dfrac{{{\pi ^2}}}{8}$

(B) $\dfrac{\pi }{2} \text{ and } \dfrac{{ - \pi }}{2}$

(C) $\dfrac{{{\pi ^2}}}{4} \text{ and } \dfrac{{ - {\pi ^2}}}{4}$

(D) $\dfrac{{{\pi ^2}}}{4} \text{ and } 0$

Ans:  Correct answer is option A.

Given: ${\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2}$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

As ${a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab$,

${\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = {\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)^2} - 2{\sin ^{ - 1}}x{\cos ^{ - 1}}x$

$\Rightarrow {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = {\dfrac{\pi }{4}^2} - 2{\sin ^{ - 1}}x\left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right)$

$\Rightarrow {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = {\dfrac{\pi }{4}^2} - \pi {\sin ^{ - 1}}x + 2{\left( {{{\sin }^{ - 1}}x} \right)^2}$

\[\Rightarrow {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = 2\left[ {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{8}} \right]\]

\[\Rightarrow {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = 2\left[ {{{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{16}}} \right]\]

The least value will be \[2\left( {\dfrac{{{\pi ^2}}}{{16}}} \right) = \dfrac{{{\pi ^2}}}{8}\].

The greatest value will be \[2\left[ {{{\left( {\dfrac{{ - \pi }}{2} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{16}}} \right] = \dfrac{{5{\pi ^2}}}{4}\]

Hence, the greatest and least values of ${\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2}$ are $\dfrac{{5{\pi ^2}}}{4}{\text{ and }}\dfrac{{{\pi ^2}}}{8}$.


31. Let $\theta  = si{n^{ - 1}}\left( {sin\left( { - 60{0^o}} \right)} \right),$ then value of $\theta$ is

(A) $\dfrac{\pi }{3}$

(B) $\dfrac{\pi }{2}$

(C) $\dfrac{{2\pi }}{3}$

(D) $\dfrac{{ - 2\pi }}{3}$

Ans:  Correct answer is option A.

Given: $\theta  = {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( { - 600 \times \dfrac{\pi }{{180}}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - 10\pi }}{3}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( { - \sin \left( {4\pi  - \dfrac{{2\pi }}{3}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{{2\pi }}{3}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi  - \dfrac{\pi }{3}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{3}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = \dfrac{\pi }{3}$

Hence, ${\sin ^{ - 1}}\left( {\sin \left( { - {{600}^ \circ }} \right)} \right) = \dfrac{\pi }{3}$..


32. The domain of the function $y = si{n^{ - 1}}\left( { - {x^2}} \right)$ is

(A) $\left[ {0,1} \right]$

(B) $\left( {0,1} \right)$

(C) $\left[ { - 1,1} \right]$

(D) $f$

Ans: Correct answer is option C.

Given: :$y = {\sin ^{ - 1}}\left( { - {x^2}} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$y = {\sin ^{ - 1}}\left( { - {x^2}} \right)$

$\Rightarrow \sin y =  - {x^2}$

As $- 1 \leqslant \sin y \leqslant 1$,

$\Rightarrow  - 1 \leqslant  - {x^2} \leqslant 1$

$\Rightarrow 1 \geqslant {x^2} \geqslant  - 1$

$\Rightarrow 0 \leqslant {x^2} \leqslant 1$

$\Rightarrow \left| x \right| \leqslant 1$

$\Rightarrow  - 1 \leqslant x \leqslant 1$

Hence, the domain of $y = {\sin ^{ - 1}}\left( { - {x^2}} \right)$ is $\left[ { - 1,1} \right]$.


33. The domain of $y = co{s^{ - 1}}\left( {{x^2} - 4} \right)$ is

(A) $\left[ {3,5} \right]$

(B) $\left[ {0,\pi } \right]$

(C) \[\left[ { - \sqrt 5 , - \sqrt 3 } \right]{C}\left[ { - \sqrt 5 ,\sqrt 3 } \right]\]

(D) \[\left[ { - \sqrt 5 , - \sqrt 3 } \right]\left[ {\sqrt 3 ,\sqrt 5 } \right]\]

Ans:  Correct answer is option D.

Given: $y = {\cos ^{ - 1}}\left( {{x^2} - 4} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$y = {\cos ^{ - 1}}\left( {{x^2} - 4} \right)$

$\Rightarrow \cos y = {x^2} - 4$

As $- 1 \leqslant \cos y \leqslant 1$,

$\Rightarrow  - 1 \leqslant {x^2} - 4 \leqslant 1$

$\Rightarrow 3 \leqslant {x^2} \leqslant 5$

$\Rightarrow \sqrt 3  \leqslant \left| x \right| \leqslant \sqrt 5$

$\Rightarrow x \in \left[ { - \sqrt 5 , - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ,\sqrt 5 } \right]$

Hence, the domain of $y = {\cos ^{ - 1}}\left( {{x^2} - 4} \right)$ is \[\left[ { - \sqrt 5 , - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ,\sqrt 5 } \right]\].


34. The domain of the function defined by $f(x) = si{n^{ - 1}}x + cosx$ is

(A) $\left[ { - 1,1} \right]$

(B) $\left[ { - 1,\pi  + 1} \right]$

(C) $\left( -\infty ,\ \infty  \right)$

(D) \[f\]

Ans: Correct answer is option A.

Given: $f(x) = {\sin ^{ - 1}}x + \cos x$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$f(x) = {\sin ^{ - 1}}x + \cos x$

The domain of $\cos$ is $R$.

The domain of ${\sin ^{ - 1}}$ is $\left[ { - 1,1} \right]$.

So, the domain of ${\sin ^{ - 1}}x + \cos x$ will be $R \cap \left[ { - 1,1} \right]$ i.e. $\left[ { - 1,1} \right]$.

Hence, the domain of $f(x) = {\sin ^{ - 1}}x + \cos x$ is $\left[ { - 1,1} \right]$.


35. The value of $sin\left( {2si{n^{ - 1}}\left( {0.6} \right)} \right)$ is

(A) $0.48$

(B) $0.96$

(C) $1.2$

(D) $sin1.2$

Ans:  Correct answer is option B.

Given: $\sin \left( {2{{\sin }^{ - 1}}\left( {0.6} \right)} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Let ${\sin ^{ - 1}}\left( {0.6} \right) = \theta$

$\Rightarrow \sin \theta  = 0.6$

As ${\cos ^2}\theta  + {\sin ^2}\theta  = 1$,

$\Rightarrow {\cos ^2}\theta  + {(0.6)^2} = 1$

$\Rightarrow {\cos ^2}\theta  + 0.36 = 1$

$\Rightarrow {\cos ^2}\theta  = 0.64$

$\Rightarrow \cos \theta  = 0.8$

As $\sin 2\theta  = 2\sin \theta \cos \theta$,

$\Rightarrow \sin \left( {2{{\sin }^{ - 1}}\left( {0.6} \right)} \right) = 2(0.6)(0.8)$

$\Rightarrow \sin \left( {2{{\sin }^{ - 1}}\left( {0.6} \right)} \right) = 0.96$

Hence, $\sin \left( {2{{\sin }^{ - 1}}\left( {0.6} \right)} \right) = 0.96$.


36. If $si{n^{ - 1}}x + si{n^{ - 1}}y = \dfrac{\pi }{2},$ then value of $co{s^{ - 1}}x + co{s^{ - 1}}y$ is

(A) $\dfrac{\pi }{2}$

(B) $\pi$

(C) $0$

(D) $\dfrac{{2\pi }}{3}$

Ans:  Correct answer is option A

Given: ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2}$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Given that ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2}$

$\Rightarrow \left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}x} \right) + \left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{2}$

$\Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2}$

Hence, ${\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2}$.


37. The value of $tan\left( {co{s^{ - 1}}\dfrac{3}{5} + ta{n^{ - 1}}\dfrac{1}{4}} \right)$ is

(A) $\dfrac{{19}}{8}$

(B) $\dfrac{8}{{19}}$

(C) $\dfrac{{19}}{{12}}$

(D) $\dfrac{3}{4}$

Ans: Correct answer is option B

Given: $\tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$\tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right) = \tan \left( {{{\tan }^{ - 1}}\dfrac{4}{3} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right)$

As ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$,

$\Rightarrow \tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right) = \tan {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{4}{3} + \dfrac{1}{4}}}{{1 - \dfrac{4}{3} \times \dfrac{1}{4}}}} \right)$

$\Rightarrow \tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right) = \tan {\tan ^{ - 1}}\left( {\dfrac{{19}}{8}} \right)$

$\Rightarrow \tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right) = \dfrac{{19}}{8}$

Hence, $\tan \left( {{{\cos }^{ - 1}}\dfrac{3}{5} + {{\tan }^{ - 1}}\dfrac{1}{4}} \right) = \dfrac{{19}}{8}$.


38. The value of the expression $sin\left[ {co{t^{ - 1}}\left( {cos\left( {ta{n^{ - 1}}1} \right)} \right)} \right]$ is

(A) $0$

(B) $1$

(C) $\dfrac{1}{{\sqrt 3 }}$

(D) $\sqrt {\dfrac{2}{3}}$

Ans:  Correct answer is option D

Given: $\sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right]$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$\sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right] = \sin \left[ {{{\cot }^{ - 1}}\left( {\cos \dfrac{\pi }{4}} \right)} \right]$

$\Rightarrow \sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right] = \sin \left[ {{{\cot }^{ - 1}}\dfrac{1}{{\sqrt 2 }}} \right]$

$\Rightarrow \sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right] = \sin \left[ {{{\sin }^{ - 1}}\sqrt {\dfrac{2}{3}} } \right]$

$\Rightarrow \sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right] = \sqrt {\dfrac{2}{3}}$

Hence, $\sin \left[ {{{\cot }^{ - 1}}\left( {\cos \left( {{{\tan }^{ - 1}}1} \right)} \right)} \right] = \sqrt {\dfrac{2}{3}}$.


39. The equation $ta{n^{ - 1}}x - co{t^{ - 1}}x = ta{n^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$ has

(A) no solution

(B) unique solution

(C) infinite number of solutions

(D) two solutions

Ans:  Correct answer is option B

Given: ${\tan ^{ - 1}}x - {\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

\[{\tan ^{ - 1}}x - {\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]

$\Rightarrow {\tan ^{ - 1}}x - {\cot ^{ - 1}}x = \dfrac{\pi }{6}{\text{       }}...{\text{(1)}}$

And ${\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}{\text{       }}...{\text{(2)}}$

Add $(1)$ and $(2),$

$\Rightarrow 2{\tan ^{ - 1}}x = \dfrac{{2\pi }}{3}$

$\Rightarrow {\tan ^{ - 1}}x = \dfrac{\pi }{3}$

$\Rightarrow x = \sqrt 3$

Hence, ${\tan ^{ - 1}}x - {\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)$ has a unique solution.


40. If $\alpha \le2si{n^{ - 1}}x + co{s^{ - 1}}x\le\beta ,$ then

(A) $\alpha  = \dfrac{{ - \pi }}{2},\beta  = \dfrac{\pi }{2}$

(B) $\alpha  = 0,\beta  = \pi$

(C) $\alpha  = \dfrac{{ - \pi }}{2},\beta  = \dfrac{{3\pi }}{2}$

(D) $\alpha  = 0,\beta  = 2\pi$

Ans:  Correct answer is option B

Given: $\alpha  \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

As $\dfrac{{ - \pi }}{2} \leqslant {\sin ^{ - 1}}x \leqslant \dfrac{\pi }{2}$,

$\Rightarrow \dfrac{{ - \pi }}{2} + \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x + \dfrac{\pi }{2} \leqslant \dfrac{\pi }{2} + \dfrac{\pi }{2}$

$\Rightarrow 0 \leqslant {\sin ^{ - 1}}x + ({\sin ^{ - 1}}x + {\cos ^{ - 1}}x) \leqslant \pi$

$\Rightarrow 0 \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \pi$

Hence, $\alpha  = 0,\beta  = \pi$.


41. The value of $ta{n^2}(se{c^{ - 1}}2) + co{t^2}(cose{c^{ - 1}}3)$ is

(A) $5$

(B) $11$

(C) $13$

(D) $15$

Ans:  Correct answer is option B

Given: ${\tan ^2}({\sec ^{ - 1}}2) + {\cot ^2}({\text{cose}}{{\text{c}}^{ - 1}}3)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

As ${\text{cose}}{{\text{c}}^2}\theta  - {\cot ^2}\theta  = 1$ and ${\text{se}}{{\text{c}}^2}\theta  - {\tan ^2}\theta  = 1$,

$\Rightarrow {\tan ^2}({\sec ^{ - 1}}2) + {\cot ^2}({\text{cose}}{{\text{c}}^{ - 1}}3) = {\sec ^2}({\sec ^{ - 1}}2) - 1 + {\text{cose}}{{\text{c}}^2}({\text{cose}}{{\text{c}}^{ - 1}}3) - 1$

$\Rightarrow {\tan ^2}({\sec ^{ - 1}}2) + {\cot ^2}({\text{cose}}{{\text{c}}^{ - 1}}3) = {2^2} \times 1 + {3^2} - 2$

$\Rightarrow {\tan ^2}({\sec ^{ - 1}}2) + {\cot ^2}({\text{cose}}{{\text{c}}^{ - 1}}3) = 11$

Hence, ${\tan ^2}({\sec ^{ - 1}}2) + {\cot ^2}({\text{cose}}{{\text{c}}^{ - 1}}3) = 11$.


EXERCISE:

Short Answer Questions:

1. Find the value of $ta{n^{ - 1}}\left( {tan\dfrac{{5\pi }}{6}} \right) + co{s^{ - 1}}\left( {cos\dfrac{{13\pi }}{6}} \right)$.

Ans: Given: ${\tan ^{ - 1}}\left( {\tan \dfrac{{5\pi }}{6}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{13\pi }}{6}} \right)$

Using the property of trigonometric inverse, ${\tan ^{ - 1}}\tan x = x,x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

from the relation, ${\tan ^{ - 1}}\tan x = x,x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$And,

${\tan ^{ - 1}}\left( {\tan \dfrac{{5\pi }}{6}} \right) \ne \dfrac{{5\pi }}{6}$$\Rightarrow \dfrac{{5\pi }}{6} \notin \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

As, ${\cos ^{ - 1}}\cos x = x;x \in [0,\pi ]$

${\cos ^{ - 1}}\left( {\cos \dfrac{{13\pi }}{6}} \right) \ne \dfrac{{13\pi }}{6}$$\Rightarrow \dfrac{{13\pi }}{6} \notin [0,\pi ]$

Solving the given expression,${\tan ^{ - 1}}\left( {\tan \dfrac{{5\pi }}{6}} \right) + {\cos ^{ - 1}}\left( {\cos \dfrac{{13\pi }}{6}} \right)$

$= {\tan ^{ - 1}}\left[ {\tan \left( {\pi  - \dfrac{\pi }{6}} \right)} \right] + {\cos ^{ - 1}}\left[ {\cos \left( {2\pi  + \dfrac{\pi }{6}} \right)} \right]$

$= {\tan ^{ - 1}}\left( { - \tan \dfrac{\pi }{6}} \right) + {\cos ^{ - 1}}\left( { - \cos \dfrac{{7\pi }}{6}} \right)$

$=  - {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) + \left[ {{{\cos }^{ - 1}}\cos \left( {\dfrac{\pi }{6}} \right)} \right]$

$=  - \dfrac{\pi }{6} + \dfrac{\pi }{6} = 0$ 


2. Evaluate $cos\left[ {co{s^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) + \dfrac{\pi }{6}} \right].$

Ans:  Given: $\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) + \dfrac{\pi }{6}} \right].$

Using the property of trigonometric inverse, ${\cos ^{ - 1}}\cos x = x;x \in [0,\pi ]$

On solving for given expression,

$\cos \left[ {{{\cos }^{ - 1}}\left( {\dfrac{{ - \sqrt 3 }}{2}} \right) + \dfrac{\pi }{6}} \right]$

$= \cos \left[ {{{\cos }^{ - 1}}\left( {\cos \dfrac{{5\pi }}{6}} \right) + \dfrac{\pi }{6}} \right]\quad \left( {\because \cos \dfrac{{5\pi }}{6} = \dfrac{{ - \sqrt 3 }}{2}} \right)$

$= \cos \left( {\dfrac{{5\pi }}{6} + \dfrac{\pi }{6}} \right)\quad \left( {\because {{\cos }^{ - 1}}\cos x = x;x \in [0,\pi ]} \right)$

$= \cos (\pi ) =  - 1$


3. Prove that $cot\left( {\dfrac{\pi }{4} - 2co{t^{ - 1}}3} \right) = 7$.

Ans:  Given: $\cot \left( {\dfrac{\pi }{4} - 2{{\cot }^{ - 1}}3} \right) = 7$

Using the property of trigonometric inverse, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$

Solving the given relation $\cot \left( {\dfrac{\pi }{4} - 2{{\cot }^{ - 1}}3} \right) = 7$

$\Rightarrow \quad \dfrac{\pi }{4} - 2{\cot ^{ - 1}}3 = {\cot ^{ - 1}}7$

$\Rightarrow \quad 2{\tan ^{ - 1}}\dfrac{1}{3} = \dfrac{\pi }{4} - {\tan ^{ - 1}}\dfrac{1}{7}$

$\Rightarrow \quad 2{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7} = \dfrac{\pi }{4}$

Now, solving $2{\tan ^{ - 1}}\dfrac{1}{3} + {\tan ^{ - 1}}\dfrac{1}{7}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{2}{3}}}{{1 - {{\left( {\dfrac{1}{3}} \right)}^2}}} + {\tan ^{ - 1}}\dfrac{1}{7}\left( {\because 2{{\tan }^{ - 1}}x = {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right)$

$= {\tan ^{ - 1}}\dfrac{3}{4} + {\tan ^{ - 1}}\dfrac{1}{7}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{3}{4} + \dfrac{1}{7}}}{{1 - \dfrac{3}{4} \cdot \dfrac{1}{7}}}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{{(21 + 4)}}{{28}}}}{{\left( {\dfrac{{28 - 3}}{{28}}} \right)}}$

$= {\tan ^{ - 1}}\dfrac{{25}}{{25}}$

$= {\tan ^{ - 1}}1 = \dfrac{\pi }{4}$ 


4. Find the value of $ta{n^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) + co{t^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) + ta{n^{ - 1}}\left( {sin\left( {\dfrac{{ - \pi }}{2}} \right)} \right)$

Ans:  Given: ${\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) + {\cot ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) + {\tan ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right)$

Using the property of trigonometric inverse,$\tan \left( {{{\tan }^{ - 1}}x} \right) = x$,${\tan ^{ - 1}}( - x) =  - {\tan ^{ - 1}}x,x \in R$

${\tan ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) + {\cot ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) + {\tan ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{2}} \right)} \right)$

$\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{6}} \right)} \right) + {\cot ^{ - 1}}\left( {\cot \dfrac{\pi }{3}} \right) + {\tan ^{ - 1}}( - 1)$

$\Rightarrow  - \dfrac{\pi }{6} + \dfrac{\pi }{3} + \left( { - \dfrac{\pi }{4}} \right) =  - \dfrac{\pi }{{12}}$ 


5. Find the value of $ta{n^{ - 1}}\left( {tan\dfrac{{2\pi }}{3}} \right)$.

Ans:  Given: ${\tan ^{ - 1}}\left( {\tan \dfrac{{2\pi }}{3}} \right)$

Using the property of trigonometric inverse, ${\tan ^{ - 1}}\tan x = x,x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

$= {\tan ^{ - 1}}\left( {\tan \dfrac{{2\pi }}{3}} \right)$

$= {\tan ^{ - 1}}\tan \left( {\pi  - \dfrac{\pi }{3}} \right)$

$= {\tan ^{ - 1}}\left( {\tan \left( { - \dfrac{\pi }{3}} \right)} \right) =  - \dfrac{\pi }{3}$ 


6. Show that $2ta{n^{ - 1}}( - 3) =  - \dfrac{\pi }{2} + ta{n^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$

Ans:  Given:  $2{\tan ^{ - 1}}( - 3) =  - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( {\dfrac{{ - 4}}{3}} \right)$

Using the property of trigonometric inverse,  $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$,${\tan ^{ - 1}}( - x) =  - {\tan ^{ - 1}}x,x \in R$

Solving for L.H.S,

L.H.S,

$\Rightarrow 2{\tan ^{ - 1}}( - 3) =  - 2{\tan ^{ - 1}}3\left( {\because {{\tan }^{ - 1}}( - x) =  - {{\tan }^{ - 1}}x,x \in R} \right)$

$=  - 2\left[ {\dfrac{\pi }{2} - {{\cot }^{ - 1}}3} \right]\left( {\because {{\tan }^{ - 1}}x + {{\cot }^{ - 1}}x = \dfrac{\pi }{2}} \right)$

$=  - 2\left[ {\dfrac{\pi }{2} - {{\tan }^{ - 1}}\dfrac{1}{3}} \right]\left( {\because {{\tan }^{ - 1}}x = {{\cot }^{ - 1}}\dfrac{1}{x},x > 0} \right)$

$=  - \pi  + 2{\tan ^{ - 1}}\dfrac{1}{3}$ 

Applying $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$

$=  - \pi  + {\tan ^{ - 1}}\dfrac{{2 \cdot \dfrac{1}{3}}}{{1 - {{\left( {\dfrac{1}{3}} \right)}^2}}}$

$=  - \pi  + {\tan ^{ - 1}}\dfrac{{2/3}}{{8/9}} =  - \pi  + {\tan ^{ - 1}}\dfrac{3}{4}$

$=  - \pi  + \dfrac{\pi }{2} - {\cot ^{ - 1}}\dfrac{3}{4}\quad \left( {\because {{\tan }^{ - 1}}x + {{\cot }^{ - 1}}x = \dfrac{\pi }{2}} \right)$

$=  - \dfrac{\pi }{2} - {\tan ^{ - 1}}\dfrac{4}{3}\quad \left( {\because {{\tan }^{ - 1}}x = {{\cot }^{ - 1}}\dfrac{1}{x},x > 0} \right)$

$=  - \dfrac{\pi }{2} + {\tan ^{ - 1}}\left( { - \dfrac{4}{3}} \right)\quad \left( {\because {{\tan }^{ - 1}}( - x) =  - {{\tan }^{ - 1}}x,x \in R} \right)$


7. Find the real solutions of the equation $ta{n^{ - 1}}\sqrt {x(x + 1)}  + si{n^{ - 1}}\sqrt {{x^2} + x + 1}  = \dfrac{\pi }{2}$

Ans: Using the property of trigonometric inverse,  $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$

${\tan ^{ - 1}}\sqrt {x(x + 1)}  + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1}  = \dfrac{\pi }{2}$

Solving 

\[ \Rightarrow {\tan ^{ - 1}}\sqrt {x(x + 1)}  = \dfrac{\pi }{2} - {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} \]

$\Rightarrow {\tan ^{ - 1}}\sqrt {{x^2} + x}  = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \left[ {\because {{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x = \dfrac{\pi }{2}} \right]$

$\Rightarrow {\cos ^{ - 1}}\left[ {\dfrac{1}{{\sqrt {1 + {x^2} + x} }}} \right] = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \left[ {\because {{\tan }^{ - 1}}x = {{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]$

$\Rightarrow \dfrac{1}{{\sqrt {{x^2} + x + 1} }} = \sqrt {{x^2} + x + 1}$

$\Rightarrow {x^2} + x + 1 = 1$

$\Rightarrow {x^2} + x = 0$ 

$\Rightarrow x(x + 1) = 0$

$\Rightarrow x = 0$ 

${\text{Also}},x + 1 = 0$

$\therefore x = 0,x =  - 1$


8. Find the value of the expression $sin\left( {2ta{n^{ - 1}}\dfrac{1}{3}} \right) + cos\left( {ta{n^{ - 1}}2\sqrt 2 } \right)$.

Ans:  Given: $\sin \left( {2{{\tan }^{ - 1}}\dfrac{1}{3}} \right) + \cos \left( {{{\tan }^{ - 1}}2\sqrt 2 } \right)$

Using the property of trigonometric inverse, $\sin \left( {{{\sin }^{ - 1}}x} \right) = x,x \in [ - 1,1]$

Solving for L.H.S and R.H.S separately,

${\text{L}}{\text{.H}}{\text{.S}}{\text{ = }}\sin \left( {2{{\tan }^{ - 1}}\dfrac{1}{3}} \right)$

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{{2 \times \dfrac{1}{3}}}{{1 + {{\left( {\dfrac{1}{3}} \right)}^2}}}} \right)\left( {\because 2{{\tan }^{ - 1}}x = {{\sin }^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}} \right)$ 

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{{\dfrac{2}{3}}}{{\dfrac{{10}}{9}}}} \right)$

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{3}{5}} \right) = \dfrac{3}{5}\left( {\because \sin \left( {{{\sin }^{ - 1}}x} \right) = x,x \in [ - 1,1]} \right)$ 

${\text{R}}{\text{.HS}}{\text{.}} = \cos \left( {{{\tan }^{ - 1}}2\sqrt 2 } \right)$

$\Rightarrow \cos \left( {{{\cos }^{ - 1}}\dfrac{1}{3}} \right) = \dfrac{1}{3}(\because \left. {\cos \left( {{{\cos }^{ - 1}}x} \right) = x,x \in [ - 1,1]} \right)$

 Adding the values of L.H.S and R.H.S

$\sin \left( {2{{\tan }^{ - 1}}\dfrac{1}{3}} \right) + \cos \left( {{{\tan }^{ - 1}}2\sqrt 2 } \right)$

$= \dfrac{3}{5} + \dfrac{1}{3}$

$= \dfrac{{9 + 5}}{{15}} = \dfrac{{14}}{{15}}$ 


9. If $2ta{n^{ - 1}}(cos\theta ) = ta{n^{ - 1}}(2cosec\theta )$, then show that $\theta  = \dfrac{\pi }{4}$,where n is any integer.

Ans:  Given: $2{\tan ^{ - 1}}(\cos \theta ) = {\tan ^{ - 1}}(2\operatorname{cosec} \theta )$

Using the property of trigonometric inverse, $2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$

$\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2\cos \theta }}{{1 - {{\cos }^2}\theta }}} \right) = {\tan ^{ - 1}}(2\operatorname{cosec} \theta )\quad \left( {\because 2{{\tan }^{ - 1}}x = {{\tan }^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)} \right)$

$\Rightarrow \quad \dfrac{{2\cos \theta }}{{{{\sin }^2}\theta }} = 2\operatorname{cosec} \theta$

$\Rightarrow \quad \dfrac{{2\cos \theta }}{{{{\sin }^2}\theta }} = \dfrac{2}{{\sin \theta }}$

$\Rightarrow \dfrac{{\cos \theta }}{{\sin \theta }} = 1$

$\Rightarrow \cot \theta  = 1$

$\Rightarrow \theta  = \dfrac{\pi }{4}$ 


10. Show that $cos\left( {2ta{n^{ - 1}}\dfrac{1}{7}} \right) = sin\left( {4ta{n^{ - 1}}\dfrac{1}{3}} \right)$.

Ans:  Given: $\cos \left( {2{{\tan }^{ - 1}}\dfrac{1}{7}} \right) = \sin \left( {4{{\tan }^{ - 1}}\dfrac{1}{3}} \right)$

Using the property of trigonometric inverse, $2{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}$, $\cos \left( {{{\cos }^{ - 1}}x} \right) = x,x \in [ - 1,1]$, $\sin \left( {{{\sin }^{ - 1}}x} \right) = x,x \in [ - 1,1]$

Solving for L.H.S and R.H.S separately,

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \cos \left( {2{{\tan }^{ - 1}}\dfrac{1}{7}} \right)$

$= \cos \left( {{{\cos }^{ - 1}}\dfrac{{1 - {{\left( {\dfrac{1}{7}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{7}} \right)}^2}}}} \right)\left( {\because 2{{\tan }^{ - 1}}x = {{\cos }^{ - 1}}\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$

$= \cos \left( {{{\cos }^{ - 1}}\dfrac{{\dfrac{{48}}{{49}}}}{{\dfrac{{50}}{{49}}}}} \right)$

$= \cos \left( {{{\cos }^{ - 1}}\dfrac{{24}}{{25}}} \right) = \dfrac{{24}}{{25}}\quad \left( {\because \cos \left( {{{\cos }^{ - 1}}x} \right) = x,x \in [ - 1,1]} \right)$ 

R.H.S

$= \sin \left( {2\left( {2{{\tan }^{ - 1}}\dfrac{1}{3}} \right)} \right)$

$= \sin \left( {2\left( {{{\tan }^{ - 1}}\dfrac{{2 \cdot \dfrac{1}{3}}}{{1 - {{\left( {\dfrac{1}{3}} \right)}^2}}}} \right)} \right)\quad \left( {\because 2{{\tan }^{ - 1}}x{{\tan }^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)} \right)$

$= \sin \left( {2{{\tan }^{ - 1}}\dfrac{{\dfrac{2}{3}}}{{\dfrac{8}{9}}}} \right)$

$= \sin \left( {2{{\tan }^{ - 1}}\dfrac{3}{4}} \right)$ 

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{{2 \times \dfrac{3}{4}}}{{1 + {{\left( {\dfrac{3}{4}} \right)}^2}}}} \right)\quad \left( {\because 2{{\tan }^{ - 1}}x = {{\sin }^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}} \right)$

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{{\dfrac{3}{2}}}{{\dfrac{{25}}{{16}}}}} \right)$

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{{24}}{{25}}} \right) = \dfrac{{24}}{{25}}\quad \left( {\because \sin \left( {{{\sin }^{ - 1}}x} \right) = x,x \in [ - 1,1]} \right)$ 

\[{\text{L}}{\text{.H}}{\text{.S}}{\text{.  = }}{\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\]


11. Solve the equation $cos\left( {ta{n^{ - 1}}x} \right) = sin\left( {co{t^{ - 1}}\dfrac{3}{4}} \right)$.

Ans:  Given: $\cos \left( {{{\tan }^{ - 1}}x} \right) = \sin \left( {{{\cot }^{ - 1}}\dfrac{3}{4}} \right)$

Using the property of trigonometric inverse, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Solving for L.H.S and R.H.S separately,

${\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \cos \left( {{{\tan }^{ - 1}}x} \right)$

$= \cos \left( {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {{x^2} + 1} }}} \right)$

$= \dfrac{1}{{\sqrt {{x^2} + 1} }}{\text{ }}$

${\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \sin \left( {{{\cot }^{ - 1}}\dfrac{3}{4}} \right)$

$= \sin \left( {{{\sin }^{ - 1}}\dfrac{4}{5}} \right) = \dfrac{4}{5}$ 

$\because$$\dfrac{1}{{\sqrt {{x^2} + 1} }} = \dfrac{4}{5}$

$\Rightarrow {16\left( {{x^2} + 1} \right) = 25}$

$\Rightarrow {16{x^2} = 9}$ 

$\Rightarrow {x^2} = \dfrac{9}{{16}}$

$\therefore x =  \pm \dfrac{3}{4}$ 


12. Prove that $ta{n^{ - 1}}\dfrac{{\sqrt {1 + {x^2}}  + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}}  - \sqrt {1 - {x^2}} }} = \dfrac{\pi }{4} + \dfrac{1}{2}co{s^{ - 1}}{x^2}$.

Ans:  Given: ${\tan ^{ - 1}}\dfrac{{\sqrt {1 + {x^2}}  + \sqrt {1 - {x^2}} }}{{\sqrt {1 + {x^2}}  - \sqrt {1 - {x^2}} }} = \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}{x^2}$

Using the property of trigonometric inverse $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$

Assume

${x^2} = \cos 2\theta$

$\Rightarrow \theta  = \dfrac{1}{2}{\cos ^{ - 1}}{x^2}$ 

Now solving for L.H.S

L.H.S. $= {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {1 + \cos 2\theta }  + \sqrt {1 - \cos 2\theta } }}{{\sqrt {1 + \cos 2\theta }  - \sqrt {1 - \cos 2\theta } }}} \right]$

$\Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt {2{{\cos }^2}\theta }  + \sqrt {2{{\sin }^2}\theta } }}{{\sqrt {2{{\cos }^2}\theta }  - \sqrt {2{{\sin }^2}\theta } }}} \right]$

$\Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\sqrt 2 \cos \theta  + \sqrt 2 \sin \theta }}{{\sqrt 2 \cos \theta  - \sqrt 2 \sin \theta }}} \right]$

$\Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}} \right]$

$\Rightarrow {\tan ^{ - 1}}\left[ {\dfrac{{\tan \dfrac{\pi }{4} + \tan \theta }}{{1 - \tan \dfrac{\pi }{4}\tan \theta }}} \right]$

$\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \theta } \right)} \right) = \dfrac{\pi }{4} + \theta$ 

Substituting the value of \[\theta  = \dfrac{1}{2}{\cos ^{ - 1}}{x^2}\]

$= \dfrac{\pi }{4} + \dfrac{1}{2}{\cos ^{ - 1}}{x^2}$

Hence, proved.


13. Find the simplified form of $co{s^{ - 1}}\left[ {\dfrac{3}{5}cosx + \dfrac{4}{5}sinx} \right],x \in \left[ {\dfrac{{ - 3\pi }}{4},\dfrac{\pi }{4}} \right]$

Ans:  Given: ${\cos ^{ - 1}}\left[ {\dfrac{3}{5}\cos x + \dfrac{4}{5}\sin x} \right],x \in \left[ {\dfrac{{ - 3\pi }}{4},\dfrac{\pi }{4}} \right]$

Using the property of trigonometric inverse, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

${\cos ^{ - 1}}\left[ {\dfrac{3}{5}\cos x + \dfrac{4}{5}\sin x} \right],x \in \left[ {\dfrac{{ - 3\pi }}{4},\dfrac{\pi }{4}} \right]$

Assume $\cos \alpha  = \dfrac{3}{5} \Rightarrow \sin \alpha  = \dfrac{4}{5} \Rightarrow \tan \alpha  = \dfrac{4}{3}$

$\Rightarrow {\cos ^{ - 1}}\left[ {\dfrac{3}{5}\cos x + \dfrac{4}{5}\sin x} \right] = {\cos ^{ - 1}}(\cos \alpha  \cdot \cos x + \sin \alpha  \cdot \sin x]$

$\Rightarrow {\cos ^{ - 1}}[\cos (\alpha  - x)] = \alpha  - x = {\tan ^{ - 1}}\dfrac{4}{3} - x$ 


14.  Prove that $si{n^{ - 1}}\dfrac{8}{{17}} + si{n^{ - 1}}\dfrac{3}{5} = si{n^{ - 1}}\dfrac{{77}}{{85}}$.

Ans:  Given: ${\sin ^{ - 1}}\dfrac{8}{{17}} + {\sin ^{ - 1}}\dfrac{3}{5} = {\sin ^{ - 1}}\dfrac{{77}}{{85}}$

Using the property of trigonometric inverse, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

${\sin ^{ - 1}}\dfrac{8}{{17}} + {\sin ^{ - 1}}\dfrac{3}{5} = {\sin ^{ - 1}}\dfrac{{77}}{{85}}$

Solving for L.H.S

${\text{L}} \cdot {\text{H}} \cdot {\text{S}} = {\sin ^{ - 1}}\dfrac{8}{{17}} + {\sin ^{ - 1}}\dfrac{3}{5}\left[ {\because {{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)} \right]$

$= {\tan ^{ - 1}}\dfrac{8}{{15}} + {\tan ^{ - 1}}\dfrac{3}{4}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{8}{{15}} + \dfrac{3}{4}}}{{1 - \dfrac{8}{{15}} \times \dfrac{3}{4}}}$ 

$= {\tan ^{ - 1}}\dfrac{{\dfrac{{32 + 45}}{{60}}}}{{\dfrac{{60 - 24}}{{60}}}}$

$= {\tan ^{ - 1}}\dfrac{{77}}{{36}}$

$= {\sin ^{ - 1}}\dfrac{{77}}{{\sqrt {5929 + 1296} }}$

$= {\sin ^{ - 1}}\dfrac{{77}}{{85}}$

$= {\text{ R}}{\text{.H}}{\text{.S}}{\text{.}}$ 


15. Show that $si{n^{ - 1}}\dfrac{5}{{13}} + co{s^{ - 1}}\dfrac{3}{5} = ta{n^{ - 1}}\dfrac{{63}}{{16}}$

Ans:  Given: ${\sin ^{ - 1}}\dfrac{5}{{13}} + {\cos ^{ - 1}}\dfrac{3}{5} = {\tan ^{ - 1}}\dfrac{{63}}{{16}}$

Using the property of trigonometric inverse $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$

Here,

${\sin ^{ - 1}}\dfrac{5}{{13}} = {\tan ^{ - 1}}\dfrac{5}{{12}}$

${\cos ^{ - 1}}\dfrac{3}{5} = {\tan ^{ - 1}}\dfrac{4}{3}$

Now, solving for L.H.S

${\text{L}}{\text{.H}}{\text{.S}}. = {\sin ^{ - 1}}\dfrac{5}{{13}} + {\cos ^{ - 1}}\dfrac{3}{5}$

$= {\tan ^{ - 1}}\dfrac{5}{{12}} + {\tan ^{ - 1}}\dfrac{4}{3}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{5}{{12}} + \dfrac{4}{3}}}{{1 - \dfrac{5}{{12}} \cdot \dfrac{4}{3}}}\left[ {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right]$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{{15 + 48}}{{36}}}}{{\dfrac{{36 - 20}}{{36}}}} = {\tan ^{ - 1}}\dfrac{{63}}{{16}}$

$= {\text{R}}{\text{.H}}{\text{.S}}$ 


16. Prove that $ta{n^{ - 1}}\dfrac{1}{4} + ta{n^{ - 1}}\dfrac{2}{9} = si{n^{ - 1}}\dfrac{1}{{\sqrt 5 }}$.

Ans:  Given: ${\tan ^{ - 1}}\dfrac{1}{4} + {\tan ^{ - 1}}\dfrac{2}{9} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 5 }}$

Using the property of trigonometric inverse $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$

Solving for L.H.S

${\text{LH}}{\text{.S}}. = {\tan ^{ - 1}}\dfrac{1}{4} + {\tan ^{ - 1}}\dfrac{2}{9}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{1}{4} + \dfrac{2}{9}}}{{1 - \dfrac{1}{4} \cdot \dfrac{2}{9}}}\left[ {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)} \right]$

$= {\tan ^{ - 1}}\dfrac{{9 + 8}}{{36 - 2}}$

$= {\tan ^{ - 1}}\dfrac{1}{2} = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 5 }} = {\text{R}}{\text{.H}}{\text{.S}}$ 

Hence, proved.


17. Find the value of $4ta{n^{ - 1}}\dfrac{1}{5} - ta{n^{ - 1}}\dfrac{1}{{239}}$.

Ans:  Given: $4{\tan ^{ - 1}}\dfrac{1}{5} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

Using the property of trigonometric inverse $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$ and ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$, $\because 2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$

$4{\tan ^{ - 1}}\dfrac{1}{5} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$=2\left( {2{{\tan }^{ - 1}}\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$= 2{\tan ^{ - 1}}\dfrac{{\dfrac{2}{5}}}{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}} - {\tan ^{ - 1}}\dfrac{1}{{239}}\quad \left( {\because 2{{\tan }^{ - 1}}x = {{\tan }^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}} \right)$ 

$= 2{\tan ^{ - 1}}\dfrac{{\dfrac{2}{5}}}{{\dfrac{{24}}{{25}}}} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$= {\tan ^{ - 1}}\dfrac{{2 \cdot \dfrac{5}{{12}}}}{{1 - {{\left( {\dfrac{5}{{12}}} \right)}^2}}} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$= {\tan ^{ - 1}}\dfrac{{144 \times 5}}{{119 \times 6}} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$= {\tan ^{ - 1}}\dfrac{{120}}{{119}} - {\tan ^{ - 1}}\dfrac{1}{{239}}$

$= {\tan ^{ - 1}}\dfrac{{\dfrac{{120}}{{119}} - \dfrac{1}{{239}}}}{{1 + \dfrac{{120}}{{119}} \cdot \dfrac{1}{{239}}}}\quad \left( {\because {{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y = {{\tan }^{ - 1}}\dfrac{{x - y}}{{1 + xy}}} \right)$

$= {\tan ^{ - 1}}\dfrac{{120 \times 239 - 119}}{{119 \times 239 + 120}} = {\tan ^{ - 1}}\dfrac{{28680 - 119}}{{28441 + 120}}$

$= {\tan ^{ - 1}}\dfrac{{28561}}{{28561}} = {\tan ^{ - 1}}1 = \dfrac{\pi }{4}$ 


18. Show that $tan\left( {\dfrac{1}{2}si{n^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}$ and justify why the other value $\dfrac{{4 + \sqrt 7 }}{3}$ is ignored.

Ans:  Given: $\tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) = \dfrac{{4 - \sqrt 7 }}{3}$

Using the trigonometric inverse function, $y = {\sin ^{ - 1}}x$,$x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Assume,

$\dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} = \theta$

$\Rightarrow {\sin ^{ - 1}}\dfrac{3}{4} = 2\theta$ 

$\Rightarrow \sin 2\theta  = \dfrac{3}{4}$

Now, solving for L.H.S

$\Rightarrow \quad \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{3}{4}$

$\Rightarrow \quad 3{\tan ^2}\theta  - 8$ and $\theta  + 3 = 0$

$\Rightarrow \quad \tan \theta  = \dfrac{{8 \pm \sqrt {64 - 36} }}{6}$

$\Rightarrow \quad \tan \theta  = \dfrac{{8 \pm \sqrt {28} }}{6} = \dfrac{{8 \pm 2\sqrt 7 }}{6} = \dfrac{{4 \pm \sqrt 7 }}{3}$

Now $- \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}$

$\Rightarrow \quad \dfrac{{ - \pi }}{4} \leqslant \dfrac{1}{2}{\sin ^{ - 1}}\dfrac{3}{4} \leqslant \dfrac{\pi }{2}$

$\therefore \tan \left( {\dfrac{{ - \pi }}{4}} \right) \leqslant \tan \left( {\dfrac{1}{2}\left( {{{\sin }^{ - 1}}\dfrac{3}{4}} \right)} \right) \leqslant \tan \dfrac{\pi }{4}$

$\Rightarrow \quad  - 1 \leqslant \tan \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{3}{4}} \right) \leqslant 1$

$\Rightarrow \tan \theta  = \dfrac{{4 - \sqrt 7 }}{3}$

L.H.S = R.H.S

$\tan \theta  = \dfrac{{4 + \sqrt 7 }}{3} > 1$which is not possible 


19. If ${a_1},{a_2},{a_3}, \ldots ,{a_n}$ is an arithmetic progression with common difference$d$, then evaluate the following expression.

$\tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_2}{a_3}}}} \right)} \right.\left. {\quad  + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_3}{a_4}}}} \right) +  \cdots  + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right]$

Ans:  Given: ${a_1},{a_2},{a_3}, \ldots ,{a_n}$ is an arithmetic progression with common difference$d$

Using the property of trigonometric inverse $\tan \left( {{{\tan }^{ - 1}}x} \right) = x$ and ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$

Common difference $d$ is, $d = {a_2} - {a_1} = {a_3} - {a_2} = {a_4} - {a_3} =  \ldots  \ldots  = {a_n} - {a_{n - 1}}$

$\therefore {\tan ^{ - 1}}\dfrac{d}{{1 + {a_1}{a_2}}} = {\tan ^{ - 1}}\dfrac{{{a_2} - {a_1}}}{{1 + {a_1}{a_2}}} = {\tan ^{ - 1}}{a_2} - {\tan ^{ - 1}}{a_1}$

Similarly ${\tan ^{ - 1}}\dfrac{d}{{1 + {a_2}{a_3}}} = {\tan ^{ - 1}}\dfrac{{{a_3} - {a_2}}}{{1 + {a_2}{a_3}}} = {\tan ^{ - 1}}{a_3} - {\tan ^{ - 1}}{a_2}.....{\tan ^{ - 1}}\dfrac{d}{{1 + {a_{n - 1}}{a_n}}} = {\tan ^{ - 1}}\dfrac{{{a_n} - {a_{n - 1}}}}{{1 + {a_{n - 1}}{a_n}}} = {\tan ^{ - 1}}{a_n} - {\tan ^{ - 1}}{a_{n - 1}}$

$\therefore \quad \tan \left[ {{{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_2}{a_3}}}} \right)} \right. + \left. {..... + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_3}{a_4}}}} \right) +  \cdots  + {{\tan }^{ - 1}}\left( {\dfrac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right]$

$= \tan \left[ {\left( {{{\tan }^{ - 1}}{a_2} - {{\tan }^{ - 1}}{a_1}} \right) + \left( {{{\tan }^{ - 1}}{a_3} - {{\tan }^{ - 1}}{a_2}} \right)} \right.\left. { +  \ldots  + \left( {{{\tan }^{ - 1}}{a_n} - {{\tan }^{ - 1}}{a_{n - 1}}} \right)} \right]$

$= \tan \left[ {{{\tan }^{ - 1}}{a_n} - {{\tan }^{ - 1}}{a_1}} \right]$

$\because {\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$

$\Rightarrow \tan \left[ {{{\tan }^{ - 1}}\dfrac{{{a_n} - {a_1}}}{{1 + {a_n}{a_1}}}} \right]$

$\Rightarrow \dfrac{{{a_n} - {a_1}}}{{1 + {a_n}{a_1}}}$ 


Choose the correct answers from the given four options in each of the exercises from 20 to 37 (M.C.Q):

20. Which of the following is the principal value branch of $co{s^{ - 1}}x$?

(A) $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$

(B) $\left( {0,\pi } \right)$

(C) $\left[ {0,\pi } \right]$

(D) $\left( {0,\pi } \right) - \left\{ {\dfrac{\pi }{2}} \right\}$

Ans: Correct answer is option C.

Given: ${\cos ^{ - 1}}x$

Use the properties of inverse trigonometric functions.

The principal value branch of ${\cos ^{ - 1}}x$ is $\left[ {0,\pi } \right]$.

Therefore, $\left[ {0,\pi } \right]$ is the correct answer.


21. Which of the following is the principal value branch of $cose{c^{ - 1}}x$?

 (A) $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

(B) $\left[ {0,\pi } \right] - \left\{ {\dfrac{\pi }{2}} \right\}$

(C) $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$

(D) $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] - \left\{ 0 \right\}$

Ans: Correct answer is option D 

Given: ${\text{cose}}{{\text{c}}^{ - 1}}x$

Use the properties of inverse trigonometric functions.

The principal value branch of ${\text{cose}}{{\text{c}}^{ - 1}}x$ is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] - \left\{ 0 \right\}$ as ${\text{cose}}{{\text{c}}^{ - 1}}(0) = \infty$ which is not defined.

Hence, $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] - \left\{ 0 \right\}$ is the correct answer.


22. If $3ta{n^{ - 1}}x + co{t^{ - 1}}x = \pi$, then $x$ equals

(A) $0$

(B) $1$

(C) $- 1$

(D) $\dfrac{1}{2}$

Ans: Correct answer is option B.

Given: $3{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \pi$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

$3{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \pi$

$\Rightarrow 2{\tan ^{ - 1}}x + {\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \pi$

$\Rightarrow 2{\tan ^{ - 1}}x + \dfrac{\pi }{2} = \pi$

$\Rightarrow 2{\tan ^{ - 1}}x = \dfrac{\pi }{2}$

$\Rightarrow {\tan ^{ - 1}}x = \dfrac{\pi }{4}$

$\Rightarrow x = 1$

Hence, $x = 1$.


23. The value of $si{n^{ - 1}}\left( {cos\left( {\dfrac{{33\pi }}{5}} \right)} \right)$ is

(A) $\dfrac{{3\pi }}{5}$

(B) $\dfrac{{ - 7\pi }}{5}$

(C) $\dfrac{\pi }{{10}}$

(D) $- \dfrac{\pi }{{10}}$

Ans: Correct answer is option D.

Given: ${\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right)$

Use the properties of inverse trigonometric functions.

${\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{30\pi  + 3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {6\pi  + \dfrac{{3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{3\pi }}{5}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{{10}}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( { - \sin \left( {\dfrac{\pi }{{10}}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{ - \pi }}{{10}}} \right)} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = \dfrac{{ - \pi }}{{10}}$

Hence, ${\sin ^{ - 1}}\left( {\cos \left( {\dfrac{{33\pi }}{5}} \right)} \right) = \dfrac{{ - \pi }}{{10}}$.


24. The domain of the function $co{s^{ - 1}}\left( {2x - 1} \right)$ is

(A) $\left[ {0,1} \right]$

(B) $\left[ { - 1,1} \right]$

(C) $\left( { - 1,1} \right)$

(D) $\left[ {0,\pi } \right]$

Ans: Correct answer is option A.

Given: ${\cos ^{ - 1}}\left( {2x - 1} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Let $f(x) = {\cos ^{ - 1}}\left( {2x - 1} \right)$

$- 1 \leqslant 2x - 1 \leqslant 1$

$\Rightarrow  - 1 + 1 \leqslant 2x \leqslant 1 + 1$

$\Rightarrow 0 \leqslant 2x \leqslant 2$

$\Rightarrow 0 \leqslant x \leqslant 1$

Hence, the domain of ${\cos ^{ - 1}}\left( {2x - 1} \right)$ is $\left[ {0,1} \right]$.


25. The domain of the function defined by $f(x) = si{n^{ - 1}}\sqrt {x - 1}$ is

(A) $\left[ {1,2} \right]$

(B) $\left[ { - 1,1} \right]$

(C) $\left[ {0,1} \right]$

(D) none of these

Ans: Correct answer is option A.

Given: $f(x) = {\sin ^{ - 1}}\sqrt {x - 1}$

Use the properties of inverse trigonometric functions.

Let $f(x) = {\sin ^{ - 1}}\sqrt {x - 1}$

As $\sqrt {x - 1}  \geqslant 0$ and $- 1 \leqslant \sqrt {x - 1}  \leqslant 1$,

$\Rightarrow 0 \leqslant x - 1 \leqslant 1$

$\Rightarrow 1 \leqslant x \leqslant 2$

Hence, the domain of $f(x) = {\sin ^{ - 1}}\sqrt {x - 1}$ is $\left[ {1,2} \right]$.


26. If $cos\left( {si{n^{ - 1}}\dfrac{2}{5} + co{s^{ - 1}}x} \right) = 0,$ then $x$ is equal to

(A) $\dfrac{1}{5}$

(B) $\dfrac{2}{5}$

(C) $0$

(D) $1$

Ans: Correct answer is option B.

Given: $\cos \left( {{{\sin }^{ - 1}}\dfrac{2}{5} + {{\cos }^{ - 1}}x} \right) = 0$

Use the properties of inverse trigonometric functions.

$\cos \left( {{{\sin }^{ - 1}}\dfrac{2}{5} + {{\cos }^{ - 1}}x} \right) = 0$

$\Rightarrow {\sin ^{ - 1}}\dfrac{2}{5} + {\cos ^{ - 1}}x = {\cos ^{ - 1}}(0)$

$\Rightarrow {\sin ^{ - 1}}\dfrac{2}{5} + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$

$\Rightarrow {\sin ^{ - 1}}\dfrac{2}{5} = \dfrac{\pi }{2} - {\cos ^{ - 1}}x$

$\Rightarrow {\sin ^{ - 1}}\dfrac{2}{5} = {\sin ^{ - 1}}x$

$x = \dfrac{2}{5}$

Hence, $x = \dfrac{2}{5}$.


27. The value of $sin\left( {2ta{n^{ - 1}}\left( {.75} \right)} \right)$ is equal to

(A) $.75$

(B) $1.5$

(C) $.96$

(D) $\sin 1.5$

Ans:  Correct answer is option C.

Given: $\sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right)$

Use the properties of inverse trigonometric functions.

$\sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = \sin \left( {2{{\tan }^{ - 1}}\dfrac{3}{4}} \right)$

As $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\dfrac{{2x}}{{1 + {x^2}}}$,

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = \sin \left( {{{\sin }^{ - 1}}\dfrac{{2 \times \dfrac{3}{4}}}{{1 + \dfrac{9}{{16}}}}} \right)$

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = \sin \left( {{{\sin }^{ - 1}}\dfrac{{\dfrac{3}{2}}}{{\dfrac{{25}}{{16}}}}} \right)$

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = \sin \left( {{{\sin }^{ - 1}}\dfrac{{24}}{{25}}} \right)$

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = \sin \left[ {{{\sin }^{ - 1}}\left( {0.96} \right)} \right]$

$\Rightarrow \sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = 0.96$

Hence, $\sin \left( {2{{\tan }^{ - 1}}\left( {.75} \right)} \right) = 0.96$.


28. The value of $co{s^{ - 1}}\left( {cos\dfrac{{3\pi }}{2}} \right)$ is equal to

(A) $\dfrac{\pi }{2}$

(B) $\dfrac{{3\pi }}{2}$

(C) $\dfrac{{5\pi }}{2}$

(D) $\dfrac{{7\pi }}{2}$

Ans:  Correct answer is option A.

Given: ${\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right)$

Use the properties of inverse trigonometric functions.

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( {\pi  + \dfrac{\pi }{2}} \right)} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right) = {\cos ^{ - 1}}\left[ { - \cos \dfrac{\pi }{2}} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right) = {\cos ^{ - 1}}\left[ 0 \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right) = \dfrac{\pi }{2}$

Hence, ${\cos ^{ - 1}}\left( {\cos \dfrac{{3\pi }}{2}} \right) = \dfrac{\pi }{2}$.


29. The value of the expression $2se{c^{ - 1}}2 + si{n^{ - 1}}\left( {\dfrac{1}{2}} \right)$ is

(A) $\dfrac{\pi }{6}$

(B) $\dfrac{{5\pi }}{6}$

(C) $\dfrac{{7\pi }}{6}$

(D) $1$

Ans:  Correct answer is option A.

Given: $2{\sec ^{ - 1}}2 + {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)$

Use the properties of inverse trigonometric functions.

$\Rightarrow 2{\sec ^{ - 1}}2 + {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = 2{\sec ^{ - 1}}\left( {\sec \dfrac{\pi }{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right)$

$\Rightarrow 2{\sec ^{ - 1}}2 + {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = 2.\dfrac{\pi }{3} + \dfrac{\pi }{6}$

$\Rightarrow 2{\sec ^{ - 1}}2 + {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}$

Hence, $2{\sec ^{ - 1}}2 + {\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}$.


30. If $ta{n^{ - 1}}x + ta{n^{ - 1}}y = \dfrac{{4\pi }}{5},$ then $co{t^{ - 1}}x + co{t^{ - 1}}y$ equals

(A) $\dfrac{\pi }{5}$

(B) $\dfrac{{2\pi }}{5}$

(C) $\dfrac{{3\pi }}{5}$

(D) $\pi$

Ans:  Correct answer is option A.

Given: ${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{4\pi }}{5}$

Use the properties of inverse trigonometric functions.

${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = \dfrac{{4\pi }}{5}$

$\Rightarrow \dfrac{\pi }{2} - {\cot ^{ - 1}}x + \dfrac{\pi }{2} - {\cot ^{ - 1}}y = \dfrac{{4\pi }}{5}$

$\Rightarrow \pi  - \left( {{{\cot }^{ - 1}}x + {{\cot }^{ - 1}}y} \right) = \dfrac{{4\pi }}{5}$

$\Rightarrow {\cot ^{ - 1}}x + {\cot ^{ - 1}}y = \dfrac{\pi }{5}$

Hence, ${\cot ^{ - 1}}x + {\cot ^{ - 1}}y = \dfrac{\pi }{5}$.


31. If ${\sin^{ - 1}}\left( {\dfrac{{2a}}{{1 + {a^2}}}} \right) + co{s^{ - 1}}\left( {\dfrac{{1 - {a^2}}}{{1 + {a^2}}}} \right) = ta{n^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right),$ where $a,x \in \left[0,1\right]$. then the value of $x$ is

(A) $0$

(B) $\dfrac{a}{2}$

(C) $a$

(D) $\dfrac{{2a}}{{1 - {a^2}}}$

Ans: Correct answer is option D.

Given: ${\sin ^{ - 1}}\left( {\dfrac{{2a}}{{1 + {a^2}}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^2}}}{{1 + {a^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$

Use the properties of inverse trigonometric functions.

Given that ${\sin ^{ - 1}}\left( {\dfrac{{2a}}{{1 + {a^2}}}} \right) + {\cos ^{ - 1}}\left( {\dfrac{{1 - {a^2}}}{{1 + {a^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$

As $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$,

\[ \Rightarrow 2{\tan ^{ - 1}}a + 2{\tan ^{ - 1}}a = 2{\tan ^{ - 1}}x\]

\[ \Rightarrow 4{\tan ^{ - 1}}a = 2{\tan ^{ - 1}}x\]

\[ \Rightarrow 2{\tan ^{ - 1}}a = {\tan ^{ - 1}}x\]

\[ \Rightarrow {\tan ^{ - 1}}\dfrac{{2a}}{{1 - {a^2}}} = {\tan ^{ - 1}}x\]

\[\Rightarrow x = \dfrac{{2a}}{{1 - {a^2}}}\]

Hence, \[x = \dfrac{{2a}}{{1 - {a^2}}}\].


32. The value of $cot\left[ {co{s^{ - 1}}\left( {\dfrac{7}{{25}}} \right)} \right]$ is

(A) $\dfrac{{25}}{{24}}$

(B) $\dfrac{{25}}{7}$

(C) $\dfrac{{24}}{{25}}$

(D) $\dfrac{7}{{24}}$

Ans: Correct answer is option D.

Given: $\cot \left[ {{{\cos }^{ - 1}}\left( {\dfrac{7}{{25}}} \right)} \right]$

Use the properties of inverse trigonometric functions.

Let ${\cos ^{ - 1}}\left( {\dfrac{7}{{25}}} \right) = \theta$

$\Rightarrow \cos \theta  = \dfrac{7}{{25}}$

$\Rightarrow \cot \theta  = \dfrac{7}{{24}}$

$\Rightarrow \cot \left[ {{{\cos }^{ - 1}}\left( {\dfrac{7}{{25}}} \right)} \right] = \cot \theta$

\[\Rightarrow \cot \left[ {{{\cos }^{ - 1}}\left( {\dfrac{7}{{25}}} \right)} \right] = \dfrac{7}{{24}}\]

Hence, \[\cot \left[ {{{\cos }^{ - 1}}\left( {\dfrac{7}{{25}}} \right)} \right] = \dfrac{7}{{24}}\].


33. The value of the expression $\tan\left( {\dfrac{1}{2}co{s^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right)$ is

(A) $2 + \sqrt 5$

(B) $\sqrt 5  - 2$

(C) $\dfrac{{\sqrt 5  + 2}}{2}$

(D) $5 + \sqrt 2$

$\left[ {Hint: tan\dfrac{\theta }{2} = \sqrt {\dfrac{{1 - cos\theta }}{{1 + cos\theta }}} } \right]$

Ans: Correct answer is option B.

Given: $\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right)$

Use the properties of inverse trigonometric functions.

Let $\theta  = \dfrac{1}{2}{\cos ^{ - 1}}\dfrac{2}{{\sqrt 5 }}$

$\Rightarrow 2\theta  = {\cos ^{ - 1}}\dfrac{2}{{\sqrt 5 }}$

$\Rightarrow \cos 2\theta  = \dfrac{2}{{\sqrt 5 }}$

As $\cos 2\theta  = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$,

$\Rightarrow \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \dfrac{2}{{\sqrt 5 }}$

$\Rightarrow 2 + 2{\tan ^2}\theta  = \sqrt 5  - \sqrt 5 {\tan ^2}\theta$

$\Rightarrow \left( {\sqrt 5  + 2} \right){\tan ^2}\theta  = \sqrt 5  - 2$

$\Rightarrow {\tan ^2}\theta  = \dfrac{{\sqrt 5  - 2}}{{\sqrt 5  + 2}}$

$\Rightarrow {\tan ^2}\theta  = \dfrac{{\left( {\sqrt 5  - 2} \right)\left( {\sqrt 5  - 2} \right)}}{{\left( {\sqrt 5  + 2} \right)\left( {\sqrt 5  - 2} \right)}}$

$\Rightarrow {\tan ^2}\theta  = \dfrac{{{{\left( {\sqrt 5  - 2} \right)}^2}}}{{5 - 4}}$

$\Rightarrow \tan \theta  =  \pm \left( {\sqrt 5  - 2} \right)$

$\Rightarrow \tan \theta  = \sqrt 5  - 2$

$\Rightarrow \tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right) = \sqrt 5  - 2$

Hence, $\tan \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right) = \sqrt 5  - 2$.


34. If $\left| x \right|\le1,$then $2ta{n^{ - 1}}x + si{n^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$ is equal to

(A) $4ta{n^{ - 1}}x$

(B) $0$

(C) $\dfrac{\pi }{2}$

(D) $\pi$

Ans:  Correct answer is option A.

Given: $\left| x \right| \leqslant 1,$

Use the properties of inverse trigonometric functions.

As $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$,

$\Rightarrow 2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x + 2{\tan ^{ - 1}}x$

$\Rightarrow 2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 4{\tan ^{ - 1}}x$

Hence, $2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 4{\tan ^{ - 1}}x$..


35. If $co{s^{ - 1}}\alpha  + co{s^{ - 1}}\beta  + co{s^{ - 1}}\gamma  = 3\pi ,$ then $\alpha \left( {\beta  + \gamma } \right) + \beta \left( {\gamma  + \alpha } \right) + \gamma (\alpha  + \beta )$ equals

(A) $0$

(B) $1$

(C) $6$

(D) $12$

Ans:  Correct answer is option C.

Given: ${\cos ^{ - 1}}\alpha  + {\cos ^{ - 1}}\beta  + {\cos ^{ - 1}}\gamma  = 3\pi$

Use the properties of inverse trigonometric functions.

Given that ${\cos ^{ - 1}}\alpha  + {\cos ^{ - 1}}\beta  + {\cos ^{ - 1}}\gamma  = 3\pi$

${\cos ^{ - 1}}\alpha  + {\cos ^{ - 1}}\beta  + {\cos ^{ - 1}}\gamma  = \pi  + \pi  + \pi$

\[ \Rightarrow {\cos ^{ - 1}}\alpha  = \pi ,{\text{ }}{\cos ^{ - 1}}\beta  = \pi ,{\text{ }}{\cos ^{ - 1}}\gamma  = \pi \]

\[ \Rightarrow \alpha  = \cos \pi ,{\text{ }}\beta  = \cos \pi ,{\text{ }}\gamma  = \cos \pi \]

\[ \Rightarrow \alpha  =  - 1,{\text{ }}\beta  =  - 1,{\text{ }}\gamma  =  - 1\]

$\Rightarrow \alpha \left( {\beta  + \gamma } \right) + \beta \left( {\gamma  + \alpha } \right) + \gamma (\alpha  + \beta ) = \left( { - 1} \right)\left( { - 1 - 1} \right) + \left( { - 1} \right)\left( { - 1 - 1} \right) + \left( { - 1} \right)\left( { - 1 - 1} \right)$

$\Rightarrow \alpha \left( {\beta  + \gamma } \right) + \beta \left( {\gamma  + \alpha } \right) + \gamma (\alpha  + \beta ) = 6$

Hence, $\alpha \left( {\beta  + \gamma } \right) + \beta \left( {\gamma  + \alpha } \right) + \gamma (\alpha  + \beta ) = 6$.


36. The number of real solutions of the equation $\sqrt {1 + cos2x}  = \sqrt 2 co{s^{ - 1}}\left( {cosx} \right)$ in $\left[ {\dfrac{\pi }{2},\pi } \right]$ is

(A) $0$

(B) $1$

(C) $2$

(D) Infinite

Ans:  Correct answer is option A.

Given: $\sqrt {1 + \cos 2x}  = \sqrt 2 {\cos ^{ - 1}}\left( {\cos x} \right)$

Use the properties of inverse trigonometric functions.

$\sqrt {1 + \cos 2x}  = \sqrt 2 {\cos ^{ - 1}}\left( {\cos x} \right)$

$\Rightarrow \sqrt {2{{\cos }^2}x}  = \sqrt 2 x$

$\Rightarrow \sqrt 2 \cos x = \sqrt 2 x$

$\Rightarrow \cos x = x$ which is not possible for any value of $x$.

Hence, the number of real solutions of $\sqrt {1 + \cos 2x}  = \sqrt 2 {\cos ^{ - 1}}\left( {\cos x} \right)$ in $\left[ {\dfrac{\pi }{2},\pi } \right]$ is $0.$.


37. If $co{s^{ - 1}}x > si{n^{ - 1}}x,$ then

(A) $\dfrac{1}{{\sqrt 2 }} < x\le1$

(B) $0 \le x < \dfrac{1}{{\sqrt 2 }}$      

(C) $- 1 \le x < \dfrac{1}{{\sqrt 2 }}$

(D) $x > 0$

Ans:  Correct answer is option C.

Given: ${\cos ^{ - 1}}x > {\sin ^{ - 1}}x$

: The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\cos ^{ - 1}}x > {\sin ^{ - 1}}x$

$\Rightarrow \sin \left[ {{{\cos }^{ - 1}}x} \right] > x$

$\Rightarrow \sin \left[ {{{\sin }^{ - 1}}\sqrt {1 - {x^2}} } \right] > x$

$\Rightarrow \sqrt {1 - {x^2}}  > x$

$\Rightarrow x < \sqrt {1 - {x^2}}$

$\Rightarrow {x^2} < 1 - {x^2}$

$\Rightarrow 2{x^2} < 1$

$\Rightarrow {x^2} < \dfrac{1}{2}$

\[ \Rightarrow x <  \pm \dfrac{1}{{\sqrt 2 }}\]

As $- 1 \leqslant x \leqslant 1$, $- 1 \leqslant x < \dfrac{1}{{\sqrt 2 }}$.

Hence, $- 1 \leqslant x < \dfrac{1}{{\sqrt 2 }}$.


38. The principal value of ${\cos^{ - 1}}\left( { - \dfrac{1}{2}} \right)$ is

Ans:  Given: ${\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$

Use the properties of inverse trigonometric functions.

Let ${\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right) = x$

$\Rightarrow \cos x =  - \dfrac{1}{2}$

$\Rightarrow \cos x = \cos \left( { - \dfrac{\pi }{3}} \right)$

$\Rightarrow \cos x = \cos \left( {\pi  - \dfrac{\pi }{3}} \right)$

$\Rightarrow \cos x = \cos \left( {\dfrac{{2\pi }}{3}} \right)$

$\Rightarrow x = \dfrac{{2\pi }}{3} \in \left[ {0,\pi } \right]$

Therefore, the principal value of ${\cos ^{ - 1}}\left( { - \dfrac{1}{2}} \right)$ is $\dfrac{{2\pi }}{3}$.


39. The value of $\sin^{ - 1}\left( {sin\dfrac{{3\pi }}{5}} \right)$ is

Ans:  Given: ${\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right)$

Use the properties of inverse trigonometric functions.

${\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right) \ne \dfrac{{3\pi }}{5}$ as $\dfrac{{3\pi }}{5} \notin \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

So, ${\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right) = {\sin ^{ - 1}}\sin \left( {\pi  - \dfrac{{2\pi }}{5}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right) = {\sin ^{ - 1}}\sin \left( {\dfrac{{2\pi }}{5}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right) = \dfrac{{2\pi }}{5} \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]$

Therefore, the value of ${\sin ^{ - 1}}\left( {\sin \dfrac{{3\pi }}{5}} \right)$ is $\dfrac{{2\pi }}{5}$.


40. If \[cos\left( {ta{n^{ - 1}}x + co{t^{ - 1}}\sqrt 3 } \right) = 0,\] then value of \[x\] is

Ans:  Given: \[\cos \left( {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}\sqrt 3 } \right) = 0\]

Use the properties of inverse trigonometric functions.

\[\cos \left( {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}\sqrt 3 } \right) = 0\]

\[\Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\sqrt 3  = {\cos ^{ - 1}}\left( 0 \right)\]

\[\Rightarrow {\tan ^{ - 1}}x + {\cot ^{ - 1}}\sqrt 3  = \dfrac{\pi }{2}\]

\[\Rightarrow {\tan ^{ - 1}}x = \dfrac{\pi }{2} - {\cot ^{ - 1}}\sqrt 3 \]

\[\Rightarrow {\tan ^{ - 1}}x = {\tan ^{ - 1}}\sqrt 3 \]

\[\Rightarrow x = \sqrt 3 \]

Therefore, \[x = \sqrt 3 \].


41. The set of values of \[{\sec ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is

Ans:  Given: \[{\sec ^{ - 1}}\left( {\dfrac{1}{2}} \right)\]

Use the properties of inverse trigonometric functions.

Let \[{\sec ^{ - 1}}\left( {\dfrac{1}{2}} \right) = x\]

\[ \Rightarrow \sec x = \dfrac{1}{2}\]

The domain of \[{\sec ^{ - 1}}x\] is \[R - \left\{ { - 1,1} \right\}\] and \[\dfrac{1}{2} \notin R - \left\{ { - 1,1} \right\}\]. 

Therefore, \[{\sec ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] has no set of values.


42. The principal value of $ta{n^{ - 1}}\sqrt 3$ is

Ans:  Given: ${\tan ^{ - 1}}\sqrt 3$

Use the properties of inverse trigonometric functions.

$\Rightarrow {\tan ^{ - 1}}\sqrt 3  = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{3}} \right)$

\[\Rightarrow {\tan ^{ - 1}}\sqrt 3  = \dfrac{\pi }{3} \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)\]

Therefore, the principal value of ${\tan ^{ - 1}}\sqrt 3$ is $\dfrac{\pi }{3}$.


43. The value of $co{s^{ - 1}}\left( {cos\dfrac{{14\pi }}{3}} \right)$ is

Ans:  Given: ${\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right)$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( {5\pi  - \dfrac{\pi }{3}} \right)} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( { - \dfrac{\pi }{3}} \right)} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( {\pi  - \dfrac{\pi }{3}} \right)} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right) = {\cos ^{ - 1}}\left[ {\cos \left( {\dfrac{{2\pi }}{3}} \right)} \right]$

$\Rightarrow {\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right) = \dfrac{{2\pi }}{3} \in \left[ {0,\pi } \right]$

Therefore, the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{14\pi }}{3}} \right)$ is $\dfrac{{2\pi }}{3}$.


44. The value of $cos\left(si{{n}^{-1}}x+co{{s}^{-1}}x \right),\left| x \right|\le 1$ is

Ans:  Given: $\left| x \right| \leqslant 1$

Use the properties of inverse trigonometric functions.

$\Rightarrow \cos \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) = \cos \dfrac{\pi }{2}$

$\Rightarrow \cos \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) = 0$

Therefore, $\cos \left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) = 0$.


45. The value of expression \[tan\left( {\dfrac{{si{n^{ - 1}}x + co{s^{ - 1}}x}}{2}} \right),\] when $x = \dfrac{{\sqrt 3 }}{2}$ is

Ans:  Given: $x = \dfrac{{\sqrt 3 }}{2}$

Use the properties of inverse trigonometric functions.

\[\tan \left( {\dfrac{{{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x}}{2}} \right) = \tan \left( {\dfrac{\pi }{4}} \right)\]

\[\Rightarrow \tan \left( {\dfrac{{{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x}}{2}} \right) = 1\]

Therefore, \[\tan \left( {\dfrac{{{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x}}{2}} \right) = 1\].


46. If \[y = 2ta{n^{ - 1}}x + si{n^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] for all $x,$ then $..... < y < .....$

Ans:  Given: \[y = 2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]

Use the properties of inverse trigonometric functions.

\[y = 2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]

As \[2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\],

\[ \Rightarrow y = 2{\tan ^{ - 1}}x + 2{\tan ^{ - 1}}x\]

\[ \Rightarrow y = 4{\tan ^{ - 1}}x\]

As $\dfrac{{ - \pi }}{2} < {\tan ^{ - 1}}x < \dfrac{\pi }{2}$,

$\Rightarrow - 4 \times \dfrac{\pi }{2} < 4{\tan ^{ - 1}}x < 4 \times \dfrac{\pi }{2}$

$\Rightarrow - 2\pi  < y < 2\pi$

Therefore, $- 2\pi  < y < 2\pi$


47. The result \[ta{n^{ - 1}}x - ta{n^{ - 1}}y = ta{n^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\] is true when value of \[xy\] is

Ans:  Given: \[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\]

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

\[{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)\] is true when $xy >  - 1$.

Therefore, $xy >  - 1$.


48. The value of \[co{t^{ - 1}}( - x)\] for all \[x \in R\] in terms of \[co{t^{ - 1}}x\] is

Ans:  Given: \[{\cot ^{ - 1}}( - x)\]

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

\[{\cot ^{ - 1}}( - x) = \pi  - {\cot ^{ - 1}}x,{\text{ }}x \in R\]

Therefore, \[{\cot ^{ - 1}}( - x) = \pi  - {\cot ^{ - 1}}x,{\text{ }}x \in R\].


State True or False for the statement in each of the Exercises 49 to 55:

49. All trigonometric functions have inverse over their respective domains.

Ans:  Given: All trigonometric functions have inverse over their respective domains.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

All the inverse trigonometric functions are restricted over their respective domains.

Therefore, the statement is false.


50. The value of the expression ${\left( {co{s^{ - 1}}x} \right)^2}$ is equal to $se{c^2}x$.

Ans:  Given: The value of the expression ${\left( {{{\cos }^{ - 1}}x} \right)^2}$ is equal to ${\sec ^2}x$.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

As ${\cos ^{ - 1}}x = {\sec ^{ - 1}}\left( {\dfrac{1}{x}} \right) \ne \sec x$,

${\left( {{{\cos }^{ - 1}}x} \right)^2} \ne {\sec ^2}x$

Therefore, the statement is false.


51. The domain of trigonometric functions can be restricted to any one of their branches (not necessarily principal value) in order to obtain their reverse functions.

Ans:  Given: The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their reverse functions.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

All the trigonometric functions are restricted over their respective domains to get their inverse functions.

Therefore, the statement is true.


52. The least numerical value, either positive or negative, of angle $\theta$ is called the principal value of the inverse trigonometric function.

Ans:  Given: The least numerical value, either positive or negative of angle $\theta$ is called the principal value of the inverse trigonometric function.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

Principal value of any inverse trigonometric function is the least numerical value, either positive or negative of $\theta$. 

Therefore, the statement is true.


53. The graph of inverse trigonometric functions can be obtained from the graph of their corresponding trigonometric function by interchanging $x$ and $y$ axes.

Ans:  Given: The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging $x$and $y$axes.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

The domain and the range are interchanged in the graph of inverse trigonometric functions to that of their corresponding trigonometric functions.

Therefore, the statement is true.


54. The minimum value of $n$ for which $ta{n^{ - 1}}\dfrac{n}{\pi } > \dfrac{\pi }{4}, n \in N$ is valid is 5.

Ans:  Given: The minimum value of $n$ for which ${\tan ^{ - 1}}\dfrac{n}{\pi } > \dfrac{\pi }{4},{\text{ }}n \in N$ is valid is $5.$

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, secant, tangent, and cosecant are called inverse trigonometric functions.

${\tan ^{ - 1}}\dfrac{n}{\pi } > \dfrac{\pi }{4}$

$\Rightarrow \dfrac{n}{\pi } > \tan \dfrac{\pi }{4}$

$\Rightarrow \dfrac{n}{\pi } > 1$

$\Rightarrow n > \pi$

$\Rightarrow n > 3.14$

So, the value of $n$ is $4.$

Therefore, the statement is false.


55. The principal value of ${\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right]$ is $\dfrac{\pi }{3}$.

Ans:  Given: The principal value of ${\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right]$ is $\dfrac{\pi }{3}$.

The inverse functions of the basic trigonometric functions sine, cotangent, cosine, 

${\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right] = {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\sin \dfrac{\pi }{6}} \right)} \right]$

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right] = {\sin ^{ - 1}}\left[ {\cos \dfrac{\pi }{6}} \right]$

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right] = {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 }}{2}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right] = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{3}} \right)$

$\Rightarrow {\sin ^{ - 1}}\left[ {\cos \left( {{{\sin }^{ - 1}}\dfrac{1}{2}} \right)} \right] = \dfrac{\pi }{3}$

Therefore, the statement is true.


In the  NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions), the following sub-topics are covered:

2.1 An Overview

2.2 Fundamental ideas

2.3 Inverse Trigonometric function properties


Students will obtain the complete solution to the questions in the NCERT  Exemplar book after each topic thoroughly with our comprehensive NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)


NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) covers a variety of topics that will assist you in preparing for higher learning and Examinations. Class 12 Maths Solutions from NCERT Inverse Trigonometric Functions, their principles, range, domain, and Functions are all covered in Chapter 2.

FAQs on NCERT Exemplar for Class 12 Maths Chapter-2 (Book Solutions)

1. Why should you refer to NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)?

The topic that demands some time and effort on the side of the learner is covered in NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions). It is a crucial Chapter in Calculus Mathematics since it clarifies the concept of integrals and their presence. We'll assist you in locating the answers to all of the NCERT exemplar questions in this Chapter. Learners will be able to understand Inverse Trigonometric Functions from NCERT Exemplar Class 12 Maths Chapter 2 answers. Learners can utilise the online webpage of Vedantu to download the PDF of NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions).

2. How will NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) help you?

The techniques on how to find integrals and what are the ranges and domains of these Inverse Functions are covered in NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions). It is a very interesting Chapter and its concepts build a base that will also help you in solving the later Chapters effectively.

Other themes covered in the NCERT Example Class 12 Maths Chapter 2 solutions include what makes these Functions Inverse, how they act, and many qualities. As a result, NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) will assist students in solving questions later in the Chapter.

3. Why should you refer to the NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)?

NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)  is quite important. For individuals who desire to pursue a career in engineering or science, Inverse Trigonometric Functions Class 12 Maths NCERT Exemplar Solutions Chapter 2 is quite important.

It's critical to understand sine, cosine, tangent, and their Inverse Trigonometric Functions, as well as their Inverses. This Chapter also will make it much easier to understand the problems by answering the questions straightforwardly and comprehensively. The knowledgeable faculties and instructors of Vedantu have answered the questions in the most straightforward manner possible. Students will be able to understand the topic and problems better with the help of answers.

NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) are comprehensive, with additional steps and formulas at each stage. This will make the answer more specific for every student.

4. What will students learn inNCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)?

Understanding and mastering this Chapter will aid one in achieving a higher grade in school, boards, and entrance tests.

Students will obtain complete answers to the questions in the NCERT book after each topic with our comprehensive Class 12 Maths NCERT Exemplar Solutions Chapter 2. With the use of questions and solved Examples, the topics presented in NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)  will assist in a lot more complete comprehension of Inverse Trigonometric Functions.

It is critical to grasp the properties of each Inverse Trigonometric function to solve problems and comprehend theorems and principles. As a result, the relationship and properties of the Inverse Trigonometric Functions cot, tan, sine, sec, cosec, cos, and sec are covered.

5. What are the important topics that will be covered in NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions)?

NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions) contains important subjects to cover.

In the NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions), the importance of understanding Inverse Trigonometric Functions and their properties will be discussed. It explains the fundamentals of Inverse Trigonometric Functions. Students will learn about the characteristics and graphical representations of Inverse Trigonometric Functions in NCERT Exemplar for Class 12 Maths Chapter 2 - Inverse Trigonometric Functions (Book Solutions).

In Chapter 2 of the NCERT Example solutions for Class 12 Maths, students will study the fundamental ideas of Trigonometric Functions such as sine, cosine, and cosec, as well as their characteristics.