Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 12 Maths - ApplicationOf Integrals - Free PDF Download

ffImage
banner

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 8 - Application of Integrals

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 8 - ApplicationOf Integrals solved by expert Maths teachers on vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 8 - Application Of Integrals Exercise questions with solutions to help you to revise complete syllabus and score more marks in your Examinations.

NCERT Exemplar for Class 12 Maths Chapter 8 - Application of Integrals is available at Vedantu’s official website i.e. vedantu.com. The Exemplar is available in PDF form for the students to practice and revise the concepts. The Exemplar PDF consists of problems and additional questions that give an efficient preparation for the students to boost their scores in the Examinations. This PDF will enhance the advanced knowledge of the respective subject which is important from the Exam’s point of view. Students constantly following the Exemplar will notice the change in the question-solving pattern and recognize the concepts they have met earlier but found them tough. The NCERT Exemplar for Class 12 Maths, Chapter 8 Applicationof Integrals has been developed and designed in such a manner that will increase the thinking process of students to solve the Exercises related to the Chapter. Also, the Exemplar is designed by the expert faculty of Vedantu on the latest guidelines and syllabus pattern advised by the Central Board of Secondary education. 

Courses
Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for Grade 12 Mathematics Chapter 8: Application of Integrals

Solved Examples

Short Answers

1. Find the area of the curve y=sin x between 0 and π.

Ans: We have,


seo images


Area OAB =0πydx=0πsin xdx 

=|cos x|0π

=cos0   --   cos π   =   2   sq   units.


2. Find the area of the region bounded by the curve ay2=x3, the y-axis and the lines y = a and y = 2a.

Ans: We have


seo images


Area BMNC =a2axdy=a2aa13y23dy

=3a135|y53|a2a

=3a135|(2a)53-a53|

=3a13a535|253-1|

=3a25|2.213-1|sq. units


3. Find the area of the region bounded by the parabola y2=2x and the straight line x – y = 4.

Ans: 


seo images


The intersecting points of the given curves are obtained by solving the equations x – y = 4 and y2=2x for x and y. We have y2=8+2y i.e., (y – 4) (y + 2) = 0 which gives y = 4, –2 and x = 8, 2. Thus, the points of intersection are (8, 4), (2, –2). Hence

Area =24(4+y-y22)dy

=|4y+y22-y36|-24=18   sq  units


4. Find the area of the region bounded by the parabolas y2 = 6x and x2 = 6y.

Ans: 


seo images


The intersecting points of the given parabolas are obtained by solving these

equations for x and y, which are 0(0, 0) and (6, 6). Hence

Area OABC =06(6x-x26)dx=|26x3/23-x318|06

=|2663/236318|=12 sq. units


5. Find the area enclosed by the curve x = 3 cost, y = 2 sint.

Ans: Eliminating t as follows: x = 3 cost, y = 2 sin t ⇒ cos t = x3 , sin t = y2 , we obtain

x29+y24=1,

Which is the equation of an ellipse.


seo images


From figure we get:

The required area =403239x2dx

=83[x29x2+92sin1x3]03=6π sq. units


Long Answers

6. Find the area of the region included between the parabola y=3x24 and the line 3x – 2y + 12 = 0. 

Ans: Solving the equations of the given curves y=3x24 and 3x – 2y + 12 = 0, we get 3x2 – 6x – 24 = 0 ⇒ (x – 4) (x + 2) = 0

⇒ x = 4, x = –2 which give y = 12, y = 3 


seo images


From Fig, the required area = area of ABC 

=24(12+3x2)dx24(3x24)dx

=(6x+3x24)24|3x312|24=27 sq.units


7. Find the area of the region bounded by the curves x = at2 and y = 2at between the ordinates corresponding to t = 1 and t = 2.

Ans: Given that x = at2 ...(i), y = 2at ...(ii) ⇒ t = y2a putting the value of t in (i), we get y2 = 4ax 

Putting t = 1 and t = 2 in (i), we get x = a, and x = 4a 


seo images


Required area = 2 area of ABCD 

=2a4aydx=2×2a4aaxdx

=8a|x3/23|a4a=563a2 sq.units


8. Find the area of the region above the x-axis, included between the parabola y2 = ax and the circle x2 + y2 = 2ax.

Ans: Solving the given equations of curves, we have x2 + ax = 2ax or x = 0, x = a, which give y = 0, y = ± a


seo images


From fig -

Area ODAB =0a(2axx2ax)dx

Let x = 2a sin2θ. Then dx = 4a sinθ cosθ dθ and x = 0, ⇒ θ = 0, x = a ⇒ θ = π4.

Again, 0a(2axx2)dx

=0π4(2a.sin θ.cos θ)(4a.sin θ.cos θ)dθ

=a20π4(1cos 4θ)dθ=a2(θsin 4θ4)0π4=π4a2

Furthermore,

0a(ax)dx=a23(x32)0a=23a2

Thus the required area = π4a223a2 = a2( π4 23) sq units


9. Find the area of a minor segment of the circle x2+y2=a2 cut off by the line x = a2

Ans: Solving the equation x2+y2=a2 and  x = a2, we obtain their points of intersection which are (a2, 3a2) and (a2, 3a2).


seo images


Hence, from fig, we get -

Required area = 2 × area of OAB =2a/2aa2x2dx

=2[x2a2x2+a22sin1xa]a/2a

=2[a22π2a4.a.32a22.π6]

=a212(6π332π)

=a212(4π33) sq.units


Objective type questions

Choose the correct answer from the given four options in each of the Examples 10 to 12.

10. The area enclosed by the circle x2+y2=2 is equal to

(A) 4π sq. units                         

(B) 22π sq. units

(C) 4π2 sq. units                      

(D) 2π sq. units   

Ans: Correct answer is (D); since Area =4022x2dx

=4[x2a2x2+a22sin1xa]02=2π sq.units


11. The area enclosed by the ellipse x2a2+y2b2=1 is equal to

(A) π2ab        

(B) πab          

(C) πa2b           

(D) πab2

Ans: Correct answer is (B); since Area =40abaa2x2dx

=4ba[x2a2x2+a22sin1xa]0a=πab sq.units


12. The area of the region bounded by the curve y=x2 and the line y = 16.

(A) 323          

(B) 2563             

(C) 643          

(D ) 1283

Ans: Correct answer is (B); since Area =2016ydy

=2(y3232)016=43(16320)

=43(42×320)

=443=2563 sq.units


Fill in the blanks in each of the Examples 13 and 14.

13. The area of the region bounded by the curve x=y2 , y-axis and the line y=3 and y = 4 is _______.

Ans: since Area =34xdy=34y2dy

=(y33)34=(433333)

=(643273)=373 sq.units


14. The area of the region bounded by the curve y = x2+x, x-axis and the line x = 2 and x = 5 is equal to ________. 

Ans: since Area =25ydx=25(x2+x)dx

=(x33)25+(x22)25=(533233)+(522222)

=(125383)+(25242)

=(1173)+(212)=234 + 636=2976 sq.units


Short Answer Questions

1. Find the area of the region bounded by the curves y2 = 9x, y = 3x.

Ans: We have y2 = 9x, y = 3x.

          (3x )2= 9x

          9x2 9x= 0

          9x(x 1)= 0

          x = 0,1


seo images


         Therefore, required area = 019xdx 013x dx 

          3 01x12dx - 301x dx

          3 [x3232]01-  3 [x22]01

          3 (230) - 3 (120)

          2- 32 = 12 units


2. Find the areaof the region bounded by the parabola y2 = 2px, x2 = 2py.

Ans: We have y2 = 2px, x2 = 2py.

         y = 2px

         x2= 2p2px

         x4 = 4 p2(2px)

         x4 = 8p3x

         x4 - 8p3x = 0

         x (x3 - 8p3) =0

         x =0, 2p


seo images


      Required area = 02p2px dx - 02px22p dx 

      = 2p 02px dx - 12p02px2 dx

     =2p [2 (x)323]02p12p[(x)33]02p

     = 2p [2 (2p)3230]12p[(2p)33 -0]

    = 2p (23.22 p32)- 12p(13.8 p3) 

= 423.2 p2- 86p2

= 86p2

= 46p2 sq unit 


 3. Find the area of the region bounded by the curve y = x3 and y = x + 6 and 

     x = 0.

Ans: We have, y = x3 and y = x + 6 and x = 0.


seo images


   Therefore, x3 = x + 6 

    x3 - x = 6

   x3 - x - 6 = 0

   x2(x2)+ 2x (x-2) + 3 (x-2)= 0 

   (x-2) (x2+ 2x +3) = 0

   x = 2, With two imaginary points

Therefore, required area of shaded region= 02(x +6 x3) dx

= [x22+6x x42]02

= [ 222 + 6(2) - 242-0]

= [2 + 12 -4] = 10 sq units


4. Find the area of the region bounded by the curve y2 = 4x, x2= 4y.

Ans: Given equations of curves are

         y2 = 4x ---------- (i)

         and x2= 4y.------- (ii)

        x24 = 4x


seo images


x24.4 = 4x

x4= 64 x

x4- 64 x= 0

x(x3- 64) =0 

x (x3-43)=0

x = 4 ,0

 Therefore, area of shaded region A = 04(4x  - x24 ) dx

     = 04(2x  - x24 ) dx

    = [2 x32.2314.x33]04

    = 323-163163 sq units

d


5. Find the area of the region included between y2 = 9x and y = x

Ans: We have , y2 = 9x and y = x

         x2 = 9 x

         x2 - 9 x =0 

         x( x - 9 ) =0

         x = 0,9


seo images


Therefore, area of shaded region A = 09(9x  - x ) dx 

09(3x  - x ) dx 

= 09(3x  ) dx - 09( x ) dx

= [6 x323x22]09

= ( 6.9323-8120)

= 54 -812 

= 108812

= 272 sq units


6. Find the area of the region enclosed by the parabola x2 = y and the line 

y = x + 2.

Ans: We have, x2 = y and y = x + 2

          x2 = x +2

          x2 -( x +2) = 0 

           x2 -x -2 = 0

           x2 -2 x + x -2 = 0

          x (x - 2) + 1(x - 2) = 0

          (x +1) ( x - 2) = 0

          x = -1, 2


seo images


Therefore, area of shaded region A = 12( x + 2  - x2 ) dx 

 = [x22+ 2 xx33]12

= [42+4 8312+ 2 -13]

= (8 - 3 - 12) = 92 sq units


7. Find the area of region bounded by the line x = 2 and the parabola y2 = 8x .

Ans: We have, y2 = 8x and x = 2.


seo images


Therefore, area of shaded region A = 2 02(8x  ) dx

= 2. 22 02(x  ) dx

= 4 .2 [2 x323]02

= 4 .2 [2 .2323]

= 323 sq units


8. Sketch the region {(x, 0) : y = 4 x2} and x-axis. Find the area of the region using integration. 

Ans: Given region is {(x, 0) : y = 4 x2} and x-axis

         We have, y = 4 x2

           y2 = 4 - x2

       y2 + x2 = 4


seo images


Therefore, area of shaded region A = 22(4 x2 ) dx

 = 22(22x2 ) dx

= [x222x2+ 222sin1x2]22

= 22.0 + 2 . π2+ 22.0 - 2 sin1(-1)

= 2 . π2 + 2 . π2

= 2 π sq units


9. Calculate the area under the curve y = 2 x  included between the lines 

x = 0 and x = 1.

Ans: We have, y = 2 x , x =0 and  x = 1.


seo images


Therefore, area of shaded region A = 01(2x ) dx

= 2 [2 x323]01 

= 2 (23.1-0)

 = 43 sq units


10. Using integration, find the area of the region bounded by the line 

2y = 5x + 7, x- axis and the lines x = 2 and x = 8.

Ans: We have 2 y = 5 x +7

         y= 5x2+ 72


seo images


Area of shaded region = 1228(5x +7) dx

= 12[5x22+7x]28

= 12[5(8)22 + 7(8) -5(2)22-7(2)]

= 96 sq units


11. Draw a rough sketch of the curve y =x  1  in the interval [1, 5]. Find the area under the curve and between the lines x = 1 and x = 5.

Ans: Given equation of the curve is y = x  1  

         y2 = x- 1


seo images


Therefore, area of shaded region A = 15(x 1 ) dx

[2 (x1)323]15 

=  (23.(51)32-0)

 = 163 sq units


12. Determine the area under the curve y = a2 x2 included between the lines x = 0 and x = a.

Ans: Given region is  y = a2 x2  

           y2 = a2 - x2

       y2 + x2 = a2


seo images


Therefore, area of shaded region A = 0a(a2 x2 ) dx

 = 0a(a2 x2 ) dx

= [x2a2x2+ a22sin1x2]0a

= [ 0 + a22sin1a2 -0 - a22sin10 ]

= a22. π2 

= a24  π sq units


13. Find the area of the region bounded by y = x and y = x.

Ans: Given equations are y = x and y = x.

         x = x  

         x2 = x

        x2 - x =0

        x (x - 1) = 0

        x = 0,1

       

seo images


Therefore, area of shaded region A = 01(x  ) dx - 01(x ) dx

[2 (x)323]01 - [ (x)22]01

=  (23.1- 12)

 = 23-12 

= 16 sq units


14. Find the area enclosed by the curve y = – x2 and the straight line x + y + 2 = 0

Ans: We have ,y = – x2 and the straight line x + y + 2 = 0.

   -x -2 = – x2

     x2 x2=0

     x2 +x2x 2=0

    x(x+1) - 2(x +1) =0 

    (x-2)(x +1) = 0

    x = 2, -1.


seo images


 Area of the shaded region = |12(x 2 +x2) dx|

= |12( x2x 2) dx|

= |[ (x)33 (x)222x  ]|12

= |[83424 +13+122]| 

=|161224+2+3126|=|276|

 =92 sq units


15. Find the area bounded by the curve y = x , x = 2y + 3 in the first quadrant and x-  axis.

Ans: Given equation of the curves for y = x , x = 2y + 3 in the first quadrant.

On solving both the equations for y, we get

y = 2y +3

y2= 2y +3

y2 2y 3=0

y2 3y + y 3=0

y (y-3) + 1(y-3) =0

(y +1) (y-3) =0

y = -1,3


seo images


Area of shaded region = 03(2y +3 y2) dy

= [2y22+3y y33]03

= [182 + (9) -9- 0]

= 9 sq units


16. Find the area of the region bounded by the curve  y2=2x and x2+y2=4x

Ans: We have y2=2x and x2+y2=4x


seo images


x2+2x=4x

x22x=0

x(x2)=0

x=0 Or x=2

Also, x2+y2=4x

x24x=y2

x24x+4=y2+4

(x2)222=y2

∴ Required area = 202[22(x2)22x]dx

=2[{x  22.22(x2)2+222sin1(x  22)}02{2.x3232}02]

=2[(0+01.0+2.π2)223(2320)]

=4π28 . 23

=2π163

=2(π83)sq. units


17. Find the area bounded by the curve y=sin x between x=0 and x = 2π.

Ans: Area of the shaded region = 02π(sin x ) dx =0π(sin x ) dx|π2π( sin x ) dx|

         =  [cos x]0π+|[cos x]π2π|

         = - [cos π - cos 0]+ |[cos 2π cos π]|


seo images


= -[-1-1]+|(1+1)|

= 2+2 = 4 sq units


18. Find the area of the region bounded by the triangle whose vertices are (–1, 1), (0, 5) and (3, 2), using integration.

Ans: Let we have the vertices of a ΔABC as A(–1, 1), B(0, 5) and C(3, 2).


seo images


Equation of AB is y1=(5  10 + 1)(x+1)

y1=4x+4

y=4x+5(i)

And equation of BC is y5=(2  53  0)(x0)

y5=33(x)

y=5x(ii)

Similarly, equation of AC is y1=(2  13 + 1)(x+1)

y1=14(x+1)

4y=x+5(iii)

Area of shaded region =10(y1y2)dx+03(y1y2)dx

=10(4x+5x + 54)dx+03(5xx + 54)dx

=[4x22+5xx285x4]1  0+[5xx22x285x4]03

=[0(4(1)22+5(1)(1)285(1)4)]+[5(3)3223285(3)40]

=[0(2518+54)]+[159298154]

=3+1854+159298154

=18+(110369308)

=18848

=18212

= 152sq. units


19. Draw a rough sketch of the region {(x, y) : y2 ≤ 6ax and x2+y216a2}. Also find the area of the region sketched using method of integration. 

Ans: We have, y2=6ax and x2+y2=16a2

x2+6ax=16a2

x2+6ax16a2=0

x2+8ax2ax16a2=0

x(x+8a)2a(x+8a)=0

(x2a)(x+8a)=0

x=2a, 8a


seo images


Area of required region = 2[02a6axdx+2a4a(4a)2x2dx]

=2[6a[x3232]02a+[x2(4a)2x2+(4a)22sin1x4a]2a4a]

=2[6a×23(2a)32+4a2(0)+16a22×π22a216a24a216a22sin12a4a]

=2[6a×23×22a32+0+4πa2a.23a8a2.π6]

=2[12×43a2+4πa223a24a2π3]

=2[83a2 + 12πa2 63a2  4a2π3]

=23a2[83 + 12π634π]

=23a2[23 + 8π]

=43a2[3 + 4π]sq. units


20. Compute the area bounded by the lines x + 2y = 2, y – x = 1 and 2x + y = 7. 

Ans: We have,

x + 2y = 2 -----(i)

y – x = 1 -----(ii)

and 2x + y = 7 -----(iii)

On solving Eqs. (i) and (ii), we get

y(22y)=1

3y2=1

y=1

From eq. (i)-

x=22(1)=0


seo images


On solving Eqs. (ii) and (iii), we get

2(y1)+y=7

2y2+y=7

3y=9

y=3

From eq. (ii)-

x=31=2

On solving Eqs. (i) and (iii), we get

2(22y)+y=7

44y+y=7

3y=3

y=1

From eq. (iii)-

2x=7(1)

x=4

Required area =137y2dy[11(22y)dy+13(y1)dy]

=12(7yy22)13[(2yy2)11+(y22y)13]

=12(2192+7+12)(21+2+1)(92312+1)

=1242=6 sq. units


21. Find the area bounded by the lines y = 4x + 5, y = 5 – x and 4y = x + 5.

Ans: Given equations of lines are

y = 4x + 5 -----(i)

 y = 5 – x ------(ii)

and 4y = x + 5 -----(iii)


seo images


On solving eq (i) and (ii), we get

4x+5=5x

5x=0

x=0

On solving eq (i) and (iii), we get

4(4x+5)=5+x

16x+20=5+x

15x=15

x=1

On solving eq (ii) and (iii), we get

4(5x)=5+x

204x=5+x

15=5x

x=3

Required area =10(4x+5)dx+03(5x)dx1413(x+5)dx

=[4x22+5x]10+[5xx22]0314[x22+5x]13

=[02+5]+[15920]14[92+1512+5]

=3+21214×24

=3+212=152sq. units


22. Find the area bounded by the curve y = 2cosx and the x-axis from x = 0 to x = 2π.

Ans: 


seo images


Required area of shaded region =02π2cos xdx

=0π22cos xdx+|π23π22cos xdx|+3π22π2cos xdx

=2[sin x]0π2+|2[sin x]π23π2|+2[sin x]3π22π

=2(10)+|2(11)|+2(0+1)

=2+4+2=8 sq. units


23. Draw a rough sketch of the given curve y = 1 + |x +1|, x = –3, x = 3, y = 0 and find the area of the region bounded by them, using integration.

Ans: We have, y=1+|x+1|, x=3, x=3,y=0


seo images


y={x + 2 , if x  1x ,   if x < 1}

Area of shaded region, A=31xdx+13(x+2)dx

=[x22]31+[x22+2x]13

=[1292]+[92+612+2]

=(4)+(8+4)

=4+12=16 sq. units


ChoosethecorrectanswerfromthegivenfouroptionsineachoftheExercises24to34.

24. The area of the region bounded by the y- axis, y = cos x and y = sin x ,

 0 x  π2 is 

(A) 2 sq units

(B) (2 + 1 ) sq units

(C) (2 - 1 ) sq units

(D) (22 - 1 ) sq units

Ans: We have , y-axis i.e x =0 , y= cos x  and y = sin x , where 0 x  π2 


seo images


Therefore, required area = 0π4(cos x   sin x) dx

 =  [sin x]0π4+[ cos x]0π4 

 = (sin π4 - sin 0 ) + (cos π4 - cos 0)

 = (120) + (12 - 1)

 = 22 1

 = (2 - 1) sq units


25. The area of the region bounded by the curve x2= 4y and the straight line x = 4y - 2 is 

(A) 38 sq units

(B) 58 sq units

(C) 78 sq units

(D) 98 sq units

Ans: Given equation of curve is x2= 4y and the straight line x = 4y - 2


seo images


For intersection point , put x = 4y -2 in equation of curve , we get

(4y  2)2 = 4 y 

16 y2 + 4 - 16 y = 4y

16 y2 -20 y +4 = 0 

4 y2 -5 y +1 = 0 

4 y2 -4 y - y +1 = 0

4 y(y-1) - 1(y - 1) = 0

(4y - 1)(y-1) =0

Therefore, y = 1, 14

For y = 1, x = 4.1 = 2 [since , negative value does not  satisfy the equation of line]

For y = 14, x = 4 .14 = -1 [ positive value does not satisfy the equation of line]

So, the intersection points are (2,1) and (-1, 14).

Therefore, area of shaded region = 12(x+ 24)dx - 12x24dx

= 14[x22 +2x ]12 14|x33|12

= 14(42+4 12+2) 14 (83+13)

= 14.152  14.93

= 98  sq units


26. The area of the region bounded by the curve y = 16 x2  and 

x - axis is:

(A) 8 π sq. units

(B) 20 π sq. units

(C) 16 π sq. units

(D) 256 π sq. units

Ans: Given equation of curve is y = 16 x2 and the equation of line is x - axis i.e , y = 0.


seo images


Therefore 16 x2 = 0

16 - x2= 0

x2= 16

x = ±4

So, the intersection points are (4,0) and (-4,0).

Therefore, area  of curve, A = 44(16  x2)12 dx 

= 44( 42 x2)12 dx

= [x2 42 x2 + 422sin1x4]44

= [42 42 42 + 422sin144]-[42 42 (4)2 + 422sin144]

= [2.0 +8 . π2-0 + 8 . π2]

= 8 π sq units


27. Area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle x2+y2=32 is 

(A) 16π sq units      (B) 4π sq units        (C) 32π sq units        (D) 24 sq units

Ans: We have enclosed by x-axis ie. y = 0, y = x and the circle x2+y2=32 in the first quadrant.

since, x2+y2=32                             [∵y = x]

2x2=32

x=±4

So, the intersection point of circle x2+y2=32 and line y = x are (4,4) and (4,-4).

And x2+y2=(42)2

Since, y = 0,

x2+0=(42)2

x=±42

So. the circle intersects the x-axis at (±42, 0)


seo images


Area of shaded region =04xdx+442(42)2x2 dx

=|x22|04+|x2(42)2x2+(42)22sin1x42|442

=162+[422.0+16sin1424242(42)21616sin1442]

=8+(16.π221616.π4)

=8+8π84π=4π sq.units


28. Area of the region bounded by the curve y = cos x between x = 0 and  x = π is 

(A)2 sq units 

(B)4 sq units

(C)3 sq units

(D)1 sq units

Ans: Required area enclosed by the curve y =cos x , x =0 and x = π


seo images


A= 0π2cos x dx + |π2πcos x dx|

= [ sin π2 - sin 0 ] + |sin π2  sin π |

= 1 + 1 = 2 sq units 


29.The area of the region bounded by parabola y2= x  and the straight line 2y = x is 

(A)43  sq units

(B)1 sq units

(C)23  sq units

(D)13  sq units

Ans: We have to find the area enclosed by parabola y2= x and the straight line 2y = x.


seo images


Therefore , (x2)2= x

x2 = 4 x 

x(x - 4) =0

x = 4 y = 2 and x = 0 y =0 

So, the intersection points are (0,0) and (4,2). 

Area enclosed by shaded region,

A = 04[xx2] dx

= [x12+112+1  12.x22]04

= [2x323  x24]04

= 23 4 32 -164- 23.0 + 14. 0

=163164

= 64 4812= 1612= 43 sq units


30. The area of the region bounded by the curve y = sin x between the ordinates x = 0 , x = π2 and the x - axis is 

(A)2 sq units

(B)4 sq units

(C)3 sq units

(D)1 sq units

 Ans: Area of the region bounded by the curve y = sin x between between the ordinates x = 0, x= π2 and x - axis is  


seo images


A = 0π2sin x dx

= - [ cos x ]0π2 = -[ cos π2 - cos 0]

= -[0-1] = 1 sq unit 


31. The area of the region bounded by the ellipse x225+ y216 = 1 is

(A) 20 π sq units

(B) 20 π2 sq units

(C) 16 π2 sq units

(D) 25 π sq units

Ans: We have , x252+ y242 = 1

Here, a = ±5 and b = ±4

And , y242= 1-x252

y2 = 16 (1-x252)


seo images


      y2 = 16 (1-x252)

      y = 16 (1x252)

      y = 4552x2

     Area enclosed by ellipse , A = 2 . 45 5552x2 dx

      =  2 . 85 0552x2 dx

      = 2.85 [x2 52x2  +522sin1x5 ]05

     = 2.85 [ 52 5252  +522sin155 0 252.0] 

     = 2.85 [ 252.π2]

     = 165.25 π4

     = 20 π sq units


32. The area of the region bounded by the circle x2 + y2 = 1 is

 (A) 2π sq units (B) π sq units (C) 3π sq units (D) 4π sq units

Ans: We have , x2 + y2 = 1 [ Since, r = ± 1 ]

          y2 = 1 -x2

          y = 1 x2


seo images


Therefore, area enclosed by circle = 2 1112x2  dx 

= 2. 2 0112x2  dx 

= 2.2 [x212x2 + 122 sin1x]01

= 4 [ 12.0+ 12.π2-0-12.0]

= 4 .π4 = π sq units


33. The area of the region bounded by the curve y = x + 1 and the lines 

x = 2 and x = 3 is 

(A) 72 sq units (B) 92 sq units (C) 112 sq units (D) 132 sq units

Ans: Required area , A = 23(x + 1) dx 


seo images


           [ x22 + x ]23

           [92+ 3 42  2 ]

           72 sq units


34. The area of the region bounded by the curve x = 2y + 3 and the y lines. y = 1 and y = –1 is 

(A) 4 sq units (B) 32 sq units (C) 6 sq units (D) 8 sq units

Ans: Required area , A = 11(2y + 3) dy


seo images


         [2 y22 + 3 y ]11

        [  y2+ 3 y ]11

        [ 1 + 3 1 + 3 ]

       6 sq. units


Exemplar for Chapter 8 Application of Integrals

Chapter 8 - Application of Integrals for Class 12 focuses on the Application Of Integrals. Students will get notes, additional questions, sample papers, and last year’s Exam papers attached to the Exemplar. Chapter 8 - Application Of Integrals is based on the Application Of Integrals with the method of finding the area under the simple curves, a line and an area between two curves, and the area region bounded by a curve. The students following the Exemplar step by step can easily clear their doubts and understand the steps used in solving the problems. 

 

The PDF of the Exemplar for Chapter 8 Applicationof Integrals is available for free at Vedantu. Vedantu offers notes, sample question papers, additional questions, and last year’s questions for the same. The online study material available at Vedantu has quality content which is checked by the group members of the expert faculty. Students also can join online Classes for the subject so that they can revise the concepts and topics, and can clear their doubts. As Class 12 is the final Class for a student’s school life, all the Chapters are important for a student. Students can use this Exemplar for testing their knowledge.

 

Students can reach out to the official site of Vedantu for the other important study material related to other Chapters. Also, they can register themselves at the website for further notifications.

WhatsApp Banner

FAQs on NCERT Exemplar for Class 12 Maths - ApplicationOf Integrals - Free PDF Download

1. Where can students find the Exemplar PDF for Chapter 8 Application of Integrals, Class 12?

Students can find the Exemplar PDF for Chapter 8 Application Of Integrals, Class 12at Vedantu’s official website i.e. vedantu.com. The Exemplar is available for the students to practice and revise the concepts. This PDF will enhance the advanced knowledge of the respective subject which is important from the Exam’s point of view. The Exemplar PDF consists of problems and additional questions that give an efficient preparation for the students to boost their scores in the Examinations. 

2. Why is NCERT Exemplar for Class 12 Maths - ApplicationOf Integrals - Free PDF Download important for the preparation for the subject?

Exemplars are important for the preparation for the subject because Exemplar gives another perspective to the students that help them to realize their plus and minus, which is directly related to their score in the Exam. Students constantly following the Exemplar will notice the change in the question-solving pattern and recognize the concepts they have met earlier but found them tough.

3. How is NCERT Exemplar for Class 12 Maths - ApplicationOf Integrals - Free PDF Download designed for the students of Class 12?

Exemplars are designed in such a way for the students of Class 12 that they can boost their preparation that increases their marks in the Exams directly. The Exemplars help students to attain the utmost knowledge about their respective topic which increases their thinking process and has the upper hand compared to other students. Also, the Exemplar is designed by the expert faculty of Vedantu on the latest guidelines and syllabus pattern advised by the Central Board of Secondary education. 

4. Is Chapter 8- Application of Integrals important for a Class 12 student?

Yes, Chapter 8- Application of Integrals is important for a Class 12 student as this Chapter has a good marks weightage in Exams. Chapter 8 - Application of Integrals is based on the Application of Integrals with the method of finding the area under the simple curves, a line and an area between two curves, and the area region bounded by a curve.  The NCERT Exemplar for Class 12 Maths, Chapter 8 Application of Integrals has been developed and designed in such a manner that will increase the thinking process of students to solve the Exercises related to the Chapter.