Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 12 Maths Chapter-4 (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 12 Maths - Determinants - Free PDF Download

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants solved by expert Maths teachers on Vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 4 - Determinants Exercise questions with solutions to help you to revise the complete syllabus and score more marks in your Examinations.

If learners want to improve their understanding of ideas while also practising and preparing for tests, the NCERT Exemplar textbooks are all they need. NCERT textbooks are available for all Classes and disciplines. Students can now use the NCERT Exemplar Solutions, which are available subject-by-subject, to clear up any misconceptions they may have about the concepts and issues included in these textbooks. All of the answers are based on the most recent CBSE patterns to assist pupils to improve their grades.

Courses
Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for Class 12 Mathematics Chapter 4 - Determinants

Solved Examples 

Short Answer (S. A)

Example 1: If |2x58x| = |6583|, then find x.

Ans: Here, we have |2x58x|=|6583|

2x240=1840

2x2=18

x2=182

x2=9

x=9

x=±3

Hence, value of x is ±3.


Example 2: If △ =|1xx21yy21zz2|, △1 = |111yzzxxyxyz|, then prove that

△+△1=0.

Ans: here, we have △1 =|111yzzxxyxyz|

Now, interchanging rows and columns, we get

⇒ △1 =|1yzx1zxy1xyz|

⇒ △1 =1xyz |xxyzx2yxyzy2zxyzz2|

Taking common xyz from C2, we get

⇒ △1 =1xyz×xyz |x1x2y1y2z1z2|

Now, interchanging C1 and C2, we get

⇒ △1 =(1) |1xx21yy21zz2|

⇒ △1 = -△ 

⇒ △ + △1 = 0 

Hence proved.


Example 3: Without expanding, Show that △ =|cosec2θcot2θ1cot2θcosec2θ142402|=0

Ans: here, we have △ =|cosec2θcot2θ1cot2θcosec2θ142402|

Applying C1C1C2

⇒ △ =|cosec2θcot2θcot2θ1cot2θcosec2θcosec2θ12402|

⇒ △ =|cosec2θcot2θcot2θ1(cosec2θcot2θ)cosec2θ12402|

⇒ △ =|1cot2θ11cosec2θ12402|

⇒ △ = 0    (when two columns are same, then value of determinants is 0)

Hence proved.


Example 4: Show that △ =|xpqpxqqqx| = (xp)(x2+px2q2).

Ans: here, we have △ =|xpqpxqqqx|

Applying C1C1C2

⇒ △ =|xppq(xp)xq0qx|

Taking common (xp) from C1

⇒ △ =(xp)|1pq1xq0qx|

Now, expanding along C1

⇒ △ =(xp)[1(x2q2)+1(pxq2)+0]

⇒ △ =(xp)(x2+px2q2)

Hence proved.


Example 5: If △ =|0bacaab0cbacbc0|, then show that △ is equal to zero.

Ans: here, we have △ =|0bacaab0cbacbc0|

Taking “-1” as common from R1,R2andR3, we get 

⇒ △ =(1)3|0abacba0bccacb0|

Now, interchanging rows and columns, we get

⇒ △ =(1)|0bacaab0cbacbc0|

⇒ △ = - △ 

⇒ 2△ = 0 

⇒ △ = 0

Hence proved.


Example 6: Prove that (A1)=(A)1, where A is an invertible matrix.

Ans: Here, matrix A is an invertible matrix, so it is non – singular i.e., |A|0.

And we know that, |A|=|A|. So, |A|0.

Also, we have AA1=A1A=I

Taking transpose on both sides, we get 

(AA1)=(A1A)=I

(A1)A=A(A1)=I

Thus, (A1) is inverse of A

Therefore, (A1)=(A)1

Hence proved.


Long Answer (L.A.)

Example 7: If x=4 is a root of △  =|x231x132x|=0, then find the other two roots.

Ans: here, we have |x231x132x|=0

Applying R1R1+R2+R3

|x+4x+4x+41x132x|=0

Taking (x+4) common from R1

(x+4)|1111x132x|=0

Applying C1C1C3 and C2C2C3

(x+4)|0010x113x2xx|=0

(x+4)[0(3x)(x1)]=0

(x+4)(3x)(x1)=0

x=4,3,1

Hence, the other two roots are 1 and 3.


Example 8: In a triangle ABC, if |1111+sinA1+sinB1+sinCsinA+sin2AsinB+sin2BsinC+sin2C|=0,

then prove that ΔABC is an isosceles triangle.

Ans: Here, we have |1111+sinA1+sinB1+sinCsinA+sin2AsinB+sin2BsinC+sin2C|=0

⇒ Applying C1C1C3 and C2C2C3

|001sinAsinBsinBsinC1+sinCsinAsinB+sin2Asin2BsinBsinC+sin2Bsin2CsinC+sin2C|=0

Taking (sinAsinB) and (sinBsinC) from C1 and C2 respectively

(sinAsinB)(sinBsinC)|001111+sinC1+sinA+sinB1+sinB+sinCsinC+sin2C|=0

Now, expanding along R1, we get

(sinAsinB)(sinBsinC)(1+sinB+sinC1sinAsinB)=0

(sinAsinB)(sinBsinC)(sinCsinA)=0

(sinAsinB)=0or(sinBsinC)=0or(sinCsinA)=0

sinA=sinBorsinB=sinCorsinC=sinA

A=BorB=CorC=A

Hence, triangle ABC is an isosceles triangle.

Hence proved.


Example 9: Show that if the determinant △ = |32sin3θ78cos2θ11142|=0, then  sinθ=0 or 12

Ans: Here, we have |32sin3θ78cos2θ11142|=0

Applying R2R2+4R1 and R3R3+7R1, we get

|32sin3θ50cos2θ+4sin3θ1002+7sin3θ|=0

Now, expanding along C2, we get

⇒ 2 (5(2+7sin3θ)10(cos2θ+4sin3θ)=0)

[(10+35sin3θ)(10cos2θ+40sin3θ)]=0

105sin3θ10cos2θ=0

2sin3θ2cos2θ=0

⇒ 2(3sinθ4sin3x)2(12sin2θ)=0

⇒ 23sinθ+4sin3x2+4sin2θ=0

3sinθ+4sin3x+4sin2θ=0

sinθ(3+4sin2x+4sinθ)=0

sinθ(4sin2x+4sinθ3)=0

sinθ(4sin2x+6sinθ2sinθ3)=0

sinθ[2sinθ(2sinθ+3)1(2sinθ+3)]=0

sinθ(2sinθ+3)(2sinθ1)=0

sinθ=0or(2sinθ+3)=0or(2sinθ1)=0

sinθ=0orsinθ=32orsinθ=12

As we know that sinθ[1,1]

Thus, sinθ=0orsinθ=12

Hence proved.


Objective Type Questions 

Choose the correct answer from the given four options in each of Examples 10 and 11.

Example 10: Let △  = |Axx21Byy21Czz21| and △1 = |ABCxyzzyzxxy|, then 

(A) △1 = △                                                 

(B) △ 1          

(C) △ - △1 = 0 

(D) None of these 

Ans: The correct answer is option (C).

Here, we have △ =|Axx21Byy21Czz21| and △1  = |ABCxyzzyzxxy|       

⇒ △1  =|ABCxyzzyzxxy|             

Now, interchanging rows and columns, we get

⇒ △1 =|AxzyByzxCzxy|

⇒ △1 =1xyz|Axx2xyzByy2xyzCzz2xyz|

Taking xyz common from C3, we get

⇒ △1 =1xyz×xyz |Axx21Byy21Czz21|

⇒ △1 = △ 

⇒ △ - △1 = 0 

Hence, option (C) is the correct answer.


Example 11: If x,yR, then the determinant

△ = |cosxsinx1sinxcosx1cos(x+y)sin(x+y)0| lies in the interval 

(A) [2,2]                                            

(B) [1,1]

(C) [2,1]                                                

(D) [1,2]

Ans: The correct answer is option (A).

Here, we have △ =|cosxsinx1sinxcosx1cos(x+y)sin(x+y)0|

Applying R3R3R1cosy+R2siny

⇒ △ =|cosxsinx1sinxcosx100sinycosy|

Now, expanding along R3, we get

⇒ △ =(sinycosy)(cos2x+sin2x)

⇒ △ =(sinycosy)

⇒ △ =2(12siny12cosy)

⇒ △ =2(cosπ4sinysinπ4cosy)

⇒ △ =2sin(yπ4)

As we know that, 1sin(yπ4)1

22sin(yπ4)2

2Δ2

Hence, option (A) is the correct answer. 


Fill in the blank in each of the examples 12 to 14.

Example 12: If A, B, C are the angles of a triangles, then △ = |sin2AcotA1sin2BcotB1sin2CcotC1|= ………..

Ans: Here, we have △ =|sin2AcotA1sin2BcotB1sin2CcotC1|

Applying R2R2R1, R3R3R1, we get

⇒ △ =|sin2AcotA1sin2Bsin2AcotBcotA0sin2Csin2AcotCcotA0|

⇒ △ =|sin2AcotA1sin(B+A)sin(BA)cosBsinBcosAsinA0sin(C+A)sin(CA)cosCsinCcosAsinA0|

Here, A+B+C=π

⇒ △ =|sin2AcotA1sin(πC)sin(BA)cosB.sinAcosA.sinBsinB.sinA0sin(πB)sin(CA)cosC.sinAcosA.sinCsinC.sinA0|

⇒ △ =|sin2AcosAsinA1sinC.sin(BA)sin(AB)sinB.sinA0sinB.sin(CA)sin(AC)sinC.sinA0|

Taking sin(BA) and sin(CA) common from R2 and R3 respectively.

⇒ △ = sin(BA)sin(CA) |sin2AcosAsinA1sinC1sinB.sinA0sinB1sinC.sinA0|

Taking  1sinA common from C2,we get

⇒ △ =sin(BA)sin(CA) |sin2AcosA1sinC1sinB0sinB1sinC0|

Now, expanding along R1,we get

⇒ △ =sin(BA)sin(CA)(1+1)

⇒ △ =sin(BA)sin(CA)×0

⇒ △ =0

Thus, △ =|sin2AcotA1sin2BcotB1sin2CcotC1|=0.


Example 13: The determinant △ = |23+35515+465103+115155| is equal to …....

Ans: Here, we have △ =|23+35515+465103+115155|

Taking 5common from C2 and C3, we get

⇒ △ =5×5|23+31115+46523+11535|

Applying C1C13C223C3 

⇒ △ =5|011052035|

⇒ △ =0    (All the elements of a row is 0)

Thus, The determinant △ =|23+35515+465103+115155| is equal to 0.


Example 14: The value of the determinant

=|sin223sin267cos180sin267sin223cos2180cos180sin223sin267|= …..

Ans: Here, we have △ =|sin223sin267cos180sin267sin223cos2180cos180sin223sin267|

⇒ △ =|sin223sin2(9023)1sin267sin2(9067)11sin223sin267|

⇒ △ =|sin223cos2231sin267cos26711sin223sin267|

Applying C1C1+C2+C3

⇒ △ =|sin223+cos2231cos2231(sin267+cos267)+1cos26711+sin223+sin267sin223sin267|

⇒ △ =|11cos22311+1cos26711+1sin223sin267|

⇒ △ =|0cos22310cos26710sin223sin267|

⇒ △ =0  (All the elements of a column is 0)

Hence, △ =|sin223sin267cos180sin267sin223cos2180cos180sin223sin267|=0.


State whether the statements in Examples 15 to 18 is True or False.

Example 15: The determinant △ = |cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy| is independent of x only.

Ans: Here, we have △ = |cos(x+y)sin(x+y)cos2ysinxcosxsinycosxsinxcosy|

Applying R1R1+R2siny+R3cosy, we get

⇒ △ =|001+cos2ysinxcosxsinycosxsinxcosy|

Now, expanding alongR1, we get

⇒ △ =(1+cos2y)(sin2x+cos2x)

⇒ △ =(1+cos2y)

Thus, the value of the given determinant is independent of x only.

Hence, the given statement is True.


Example 16: The value of △ = |111nC1n+2C1n+4C1nC2n+2C2n+4C2| is 8.

Ans: Here, we have △ =|111.nC1.n+2C1.n+4C1.nC2.n+2C2.n+4C2|

⇒ △ =|111n!(n1)!(n+2)!(n+1)!(n+4)!(n+3)!n!(n2)!2!(n+2)!n!2!(n+4)!(n+2)!2!|

⇒ △ =|111n(n1)!(n1)!(n+2)(n+1)!(n+1)!(n+4)(n+3)!(n+3)!n(n1)(n2)!(n2)!2!(n+2)(n+1)n!n!2!(n+4)(n+3)(n+2)!(n+2)!2!|

⇒ △ =|111n(n+2)(n+4)n(n1)2(n+2)(n+1)2(n+4)(n+3)2|

Taking 12 as common from R3

⇒ △ =12|111n(n+2)(n+4)n(n1)(n+2)(n+1)(n+4)(n+3)|

Applying C1C1C3 and C2C2C3, we get

⇒ △ =12|00142(n+4)8n124n10(n+4)(n+3)|

Now, expanding along R1, we get

⇒ △ =12[4(4n10)+2(8n12)]

⇒ △ =12[16n+4016n24]

⇒ △ =12×16

⇒ △ = 8

Hence, the given statement is True.


Example 17: If A=[x522y311z], xyz=80, 3x+2y+10z=20, then 

Aadj.A=[810008100081] .

Ans: here we have A=|x522y311z|, xyz=80, 3x+2y+10z=20

As we know that, A1=1|A|adj(A)

AA1=1|A|Aadj(A)

I=1|A|Aadj(A)

Aadj(A)=|A| ……… (i)

Here, |A|=x(yz3)5(2z3)+2(2y)

|A|=xyz3x10z+15+42y

|A|=xyz+19(3x+2y+10z)

|A|=80+1920

|A|=79

Therefore, Aadj(A)=79, and it is constant value.

Hence, the given statement is False.


Example 18: If A = [01312x231]  A1=[124521233212y12], then x=1,y=1.

Ans: Here, we have A=[01312x231]  

A1=[124521233212y12]

As we know that, AA1=I

[01312x231] [124521233212y12] =[100010001]

[012+220+3+3y032+32121+x24+6+xy523+x211+18+9+y592+12] = [100010001]

[13(1+y)012+x22+xy12+x211+y1] = [100010001]

Now, comparing both sides, we get

3(1+y)=0 and 12+x2=0

1+y=0 and 1+x=0

y=1 and x = 1 

Hence, the given statement is True.

  

Exercise 4.3

Using the properties of determinants in Exercise 1 to 6, evaluate

1. |x2x+1x1x+1x+1|

Ans: Here, we have |x2x+1x1x+1x+1|

Applying [C1C1C2], we get

=|x22x+2x10x+1| 

=(x22x+2)(x+1)0(x1)

=x32x2+2x+x22x+2 

=x3x2+2 

Hence, |x2x+1x1x+1x+1|=x3x2+2 .


2. |a+xyzxa+yzxya+z|

Ans: Here, we have |a+xyzxa+yzxya+z|

Applying [C1C1+C2+C3], we get

=|a+x+y+zyza+x+y+za+yza+x+y+zya+z| 

Now, take common (a+x+y+z) from C1

=(a+x+y+z)|1yz1a+yz1ya+z| 

Applying [R2R2R1andR3R3R1], we get

=(a+x+y+z)|1yz0a000a| 

Now, expanding along R1

=(a+x+y+z)[(a.a0)y(00)+z(00)] 

=(a+x+y+z)[a200] 

=a2(a+x+y+z) 

Hence, |a+xyzxa+yzxya+z|=a2(a+x+y+z).  


3. |0xy2xz2x2y0yz2x2zzy20|

Ans: Here, we have |0xy2xz2x2y0yz2x2zzy20|

Now, taking common x2,y2andz2 from C1,C2andC3 respectively.

=x2y2z2|0xxy0yzz0|

Applying [C2C2C3], we get 

=x2y2z2|00xyyyzz0| 

Now, expanding along R1

=x2y2z2[0(0yz)0(0zy)+x(yz+yz)] 

=x2y2z2[x(yz+yz)] 

=x2y2z2×2xyz 

=2x3y3z3 

Hence, |0xy2xz2x2y0yz2x2zzy20|=2x3y3z3.


4. |3xx+yx+zxy3yzyxzyz3z|

Ans: Here, we have |3xx+yx+zxy3yzyxzyz3z|

Applying [C1C1+C2+C3], we get

=|x+y+zx+yx+zx+y+z3yzyx+y+zyz3z| 

Now, take common (x+y+z) from C1

=(x+y+z)|1x+yx+z13yzy1yz3z| 

Applying [R2R2R1andR3R3R1], we get

=(x+y+z)|1x+yx+z02y+xxy0xz2z+x| 

Now, expanding along R1

=(x+y+z)[(2y+x)(2z+x)(xy)(xz)0+0] 

=(x+y+z)[4yz+2xy+2xz+x2(x2xzxy+yz)] 

=(x+y+z)[4yz+2xy+2xz+x2x2+xz+xyyz] 

=(x+y+z)[3yz+3xy+3xz] 

=3(x+y+z)(yz+xy+xz) 

Hence, |3xx+yx+zxy3yzyxzyz3z|=3(x+y+z)(yz+xy+xz).


5. |x+4xxxx+4xxxx+4|

Ans: Here, we have |x+4xxxx+4xxxx+4|

Applying [C1C1+C2+C3], we get

=|3x+4xx3x+4x+4x3x+4xx+4| 

Now, taking common (3x+4) from C1

=(3x+4)|1xx1x+4x1xx+4| 

Applying [R2R2R1andR3R3R1], we get

 =(3x+4)|1xx040004| 

Now, expanding along R1

=(3x+4)[(160)0+0] 

=16(3x+4) 

Hence, |x+4xxxx+4xxxx+4|=16(3x+4).


6. |abc2a2a2bbca2b2c2ccab|

Ans: Here, we have |abc2a2a2bbca2b2c2ccab|

Applying [R1R1+R2+R3], we get

=|a+b+ca+b+ca+b+c2bbca2b2c2ccab| 

Now, taking common (a+b+c) from R1

=(a+b+c)|1112bbca2b2c2ccab| 

Applying [C2C2C1andC3C3C1], we get

=(a+b+c)|1002b(a+b+c)02c0(a+b+c)| 

Now, expanding along R1

=(a+b+c)[(a+b+c)20] 

=(a+b+c)3 

Hence, |abc2a2a2bbca2b2c2ccab|=(a+b+c)3.


Using the properties of determinants in Exercises 7 to 9.

7. |y2z2yzy+zz2x2zxz+xx2y2xyx+y|=0

Ans: Here, we have L.H.S =|y2z2yzy+zz2x2zxz+xx2y2xyx+y| 

Applying [R1xR1,R2yR2andR3zR3],

And it can be written as, 

⇒ L.H.S  =1xyz|xy2z2xyzxy+xzyz2x2yzxyz+xyzx2y2zxyzx+zy|

Taking common (xyz) from C1andC2, we get

⇒ L.H.S  =1xyz×(xyz)2|yz1xy+xzzx1yz+xyxy1zx+zy|

⇒ L.H.S =xyz|yz1xy+xzzx1yz+xyxy1zx+zy|

Now, applying [C1C1+C3], we get

⇒ L.H.S  =xyz|xy+yz+xz1xy+xzxy+yz+xz1yz+xyxy+yz+xz1zx+zy|

Taking common (xy+yz+xz) from C1

⇒ L.H.S  =xyz(xy+yz+xz)|11xy+xz11yz+xy11zx+zy|

⇒ L.H.S  =xyz(xy+yz+xz)×0        

(when two columns are same, then value of determinants is 0)

⇒ L.H.S = 0        

⇒ L.H.S  =R.H.S        

Hence Proved.


8. |y+zzyzz+xxyxx+y|=4xyz

Ans: Here, we have L.H.S =|y+zzyzz+xxyxx+y|

Applying [C1C1+C2+C3], we get

=|2(y+z)zy2(x+z)z+xx2(x+y)xx+y| 

Now, taking common (2) from C1

=2|(y+z)zy(x+z)z+xx(x+y)xx+y| 

Applying [C1C1C2], we get

=2|yzy0z+xxyxx+y| 

Applying [R3R3R1], we get

=2|yzy0z+xx0xzx| 

Now, expanding along R1

=2[y{xz+x2(x2xz)}00] 

=2[y{xz+x2x2+xz}] 

=2×2xyz 

=4xyz 

=R.H.S 

Thus, L.H.S = R.H.S

Hence proved.


9. |a2+2a2a+112a+1a+21331|=(a1)3

Ans: Here, we have L.H.S =|a2+2a2a+112a+1a+21331|

Applying [R2R2R1andR3R3R1], we get

=|a2+2a2a+11(a21)(a+1)0(a2+2a3)(2a2)0| 

=|a2+2a2a+11(a1)(a+1)(a1)0(a+3)(a1)2(a1)0| 

Now, taking common (a1) from R2 and R3

=(a1)2|a2+2a2a+11(a+1)10(a+3)20| 

Now, expanding along R1

=(a1)2[00+1{2a+2(a+3)}] 

=(a1)2(2a+2a3) 

=(a1)2(a1) 

=(a1)3 

=R.H.S 

Thus, L.H.S = R.H.S

Hence proved.


10. If A+B+C=0, then prove that |1cosCcosBcosC1cosAcosBcosA1|=0

Ans: Here, we have A+B+C=0

Now, L.H.S = |1cosCcosBcosC1cosAcosBcosA1|

Expanding along R1, we get

=1(1Cos2A)cosC(cosCcosA.cosB)+cosB(cosA.cosCcosB)

=sin2Acos2C+cosA.cosB.cosC+cosA.cosB.cosCcos2B

=sin2Acos2B+2cosA.cosB.cosCcos2C

=cos(A+B).cos(AB)+2cosA.cosB.cosCcos2C

[ cos2Bsin2A=cos(A+B).cos(AB)]

=cos(C).cos(AB)+cosC(2cosA.cosBcosC)   

=cosC(cosA.cosB+sinA.sinB)+cosC(2cosA.cosBcosC)

=cosC(cosA.cosB+sinA.sinB2cosA.cosB+cosC)

=cosC(sinA.sinBcosA.cosB+cosC)

=cosC(cosA.cosBsinA.sinBcosC)

=cosC[cos(A+B)cosC]

=cosC[cos(C)cosC]

=cosC[cosCcosC]

= 0 

= R.H.S

Thus, L.H.S = R.H.S

Hence proved.


11. If the co-ordinates of the vertices of an equilateral triangle with sides of length a are (x1,y1),(x2,y2),(x3,y3), then |x1y11x2y21x3y31|2=3a44.

Ans: Since, we know that area of a triangle with vertices (x1,y1),(x2,y2)and(x3,y3) is given by Δ=12|x1y11x2y21x3y31|

Δ2=14|x1y11x2y21x3y31|2 ……………… eq (i)

And we know that area of an equilateral triangle with side a, 

Δ=34×a2 

Δ2=(34×a2)2 

Δ2=316×a4 ………………. Eq (ii)

From eq (i) and (ii), we get

14|x1y11x2y21x3y31|2=316×a4 

|x1y11x2y21x3y31|2=3a44 

Hence proved.


12. Find the value of θ satisfying |11sin3θ43cos2θ772|=0

Ans: Here, we have |11sin3θ43cos2θ772|=0

Applying [C1C1C2], we get

|01sin3θ73cos2θ1472|=0

Taking common 7 from C1

7|01sin3θ13cos2θ272|=0

|01sin3θ13cos2θ272|=0

Now, expanding along R1

0(6+7cos2θ)1(22cos2θ)+sin3θ(76)=0

2+2cos2θ+sin3θ=0

2+2(12sin2θ)+3sinθ4sin3=0

2+24sin2θ+3sinθ4sin3=0

4sin3+4sin2θ3sinθ=0

sinθ(4sin2+4sinθ3)=0

sinθ(4sin2+6sinθ2sinθ3)=0

sinθ{2sinθ(2sinθ+3)1(2sinθ+3)}=0

sinθ(2sinθ+3)(2sinθ1)=0

sinθ=0,sinθ=32,sinθ=12

Now, Case 1: When sinθ=0

sinθ=Sin0

θ=nπ, where nZ

Case 2: When sinθ=32

Here, it is not possible because sinθ[1,1]

Case 3: when sinθ=12

sinθ=Sinπ6

sinθ=Sinπ6

θ=nπ+(1)nπ6 , where nZ

Hence, values of θ are nπ or nπ+(1)nπ6, where nZ.


13. If |4x4+x4+x4+x4x4+x4+x4+x4x|=0, then find the value of x.

Ans: Here, we have |4x4+x4+x4+x4x4+x4+x4+x4x|=0

Applying [C1C1+C2+C3], we get

|12+x4+x4+x12+x4x4+x12+x4+x4x|=0

Now, taking common (12+x) from C1

(12+x)|14+x4+x14x4+x14+x4x|=0

Applying [R2R2R1andR3R3R1], we get

(12+x)|14+x4+x02x0002x|=0 

Now, expanding along C1

(12+x)(4x2)=0 

(12+x)=0or(4x2)=0 

x=12orx=0 

Hence, the values of x are -12 and 0.


14. If a1,a2,a3, …… ar are in G.P, then prove that the determinant|ar+1ar+5ar+9ar+7ar+11ar+15ar+11ar+17ar+21| is independent of r.

Ans: Let the first term of given G.P be A and common ratio be R.

Then, nth term, an=ARn1

Therefore, 

=|ar+1ar+5ar+9ar+7ar+11ar+15ar+11ar+17ar+21|

=|ARrARr+4ARr+8ARr+6ARr+10ARr+14ARr+10ARr+16ARr+20|

Taking common ARr,ARr+6 and ARr+10from R1,R2 and R3 respectively.

=ARr.ARr+6. ARr+10|1R4R81R4R81R6R10|

= 0                      (two rows are identical, hence value of determinant is 0)

Hence, the determinant |ar+1ar+5ar+9ar+7ar+11ar+15ar+11ar+17ar+21| is independent of r.


15. Show that the points (a+5,a4),(a2,a+3)and (a,a) do not lie on a straight line for any value of a.

Ans: Here, given points are (a+5,a4),(a2,a+3) and (a,a).

Now, Δ=12|x1y11x2y21x3y31|

⇒  Δ=12|a+5a41a2a+31aa1|

Applying [R2R2R1andR3R3R1], we get

⇒  Δ=12|a+5a41770540|

Now, expanding along C3

⇒  Δ=12[28+35]

⇒  Δ=72sq. units

⇒  Δ0

Here, the area of this triangle is not equal to 0.

Hence, given points form a triangle i.e., points do not lie in a straight line.


16. Show that the ΔABC is an isosceles triangle if the determinant,

Δ=|1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC|=0 

Ans: Here, we have |1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC|=0

Now, applying [C2C2C1] and [C3C3C1], we get

|1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC|=0

|1001+cosAcosBcosAcosCcosAcos2A+cosAcos2Bcos2A+cosBcosAcos2Ccos2A+cosCcosA|=0

|1001+cosAcosBcosAcosCcosAcos2A+cosA(cosBcosA)(cosB+cosA+1)(cosCcosA)(cosC+cosA+1)|=0

Now, take common (cosBcosA) and (cosCcosA) from C1and C2 respectively, we get

(cosBcosA)(cosCcosA)|1001+cosA11cos2A+cosA(cosB+cosA+1)(cosC+cosA+1)|=0

Expanding along R1,

(cosBcosA)(cosCcosA)(cosC+cosA+1cosBcosA1)=0

(cosBcosA)(cosCcosA)(cosCcosB)=0

(cosBcosA)=0or(cosCcosA)=0or(cosCcosB)=0

cosB=cosAorcosC=cosAorcosC=cosB

B=AorC=AorC=B

Hence, ΔABC is an isosceles triangle.


17. Find A1 if A=[011101110] and show that A1=A23I2.

Ans: Here, we have A=[011101110]

Here, minors of elements are 

M11=|0110|=1M12=|1110|=1, M13=|1011|=1

M21=|1110|=1M22=|0110|=1, M23=|0111|=1

M31=|1101|=1M32=|0111|=1, M33=|0110|=1

Now, cofactor of an element aijisAij=(1)i+jMij.

A11=(1)1+1M11=1A12=1, A13=1

A21=1 , A22=1, A23=1

A31=1A32=1, A33=1

Thus, matrix formed by cofactors, say P=[111111111]

Now, Adjoint matrix, adjA= transpose of matrix P

adjA=[P]T

adjA=[111111111]T

adjA=[111111111]

And |A|=|011101110|

|A|=0(01)1(01)+1(10)

|A|=1+1=2

Now, L.H.S =A1

=adjA|A|

=12[111111111]

And R.H.S =A23I2

=12[011101110][011101110] 12[300030003]

=12[211121112]12[300030003]

=12[111111111]

Thus, L.H.S = R.H.S

Hence proved.


Long Answer (L.A)

18. If A=[120212011], find A1. Using A1, solve the system of linear equations x2y=10,2xyz=8,2y+z=7.

Ans: Here, we have A=[120212011] ……. Eq(i)

Now, |A|=|120212011|

|A|=1(12)2(20)+0(20)

|A|=3+4=1

Here, minors of elements are 

M11=|1211|=3 ,M12=|2201|=2, M13=|21011|=2

M21=|2011|=2M22=|1001|=1, M23=|1201|=1

M31=|2012|=4 , M32=|1022|=2, M33=|1221|=3

Now, cofactor of an element aijisAij=(1)i+jMij.

A11=(1)1+1M11=3A12=2, A13=2

A21=2A22=1, A23=1

A31=4A32=2, A33=3

Thus, matrix formed by cofactors, say P=[322211423]

Now, Adjoint matrix, adjA= transpose of matrix P

adjA=[P]T

adjA=[322211423]T

adjA=[324212213]

Now, A1 =adjA|A|

A1 =[324212213] ……….. eq(ii)

Hence, the required A1 is [324212213]

Also, we have the system of linear equations as

x2y=10,2xyz=8,2y+z=7 

These equations can be written as, 

[120211021][xyz] =[1087] 

Let C=[120211021] ,X=[xyz] & D=[1087]

CX=D

We know that, (AT)1=(A1)T

CT=[120212011]=A             (from eq (i))

X=C1D=(A1)TD

[xyz] = [322211423] [1087]

[xyz] =[30+16+1420+8+740+16+21]

[xyz] =[053]

On comparing, we get

x=0,y=5,z=3

Hence, values of x,y and z are 0, 5 and 3 respectively.


19. Using the matrix method, solve the system of equations 3x+2y-2z=3, x+2y+3z=6, 2x-y+z=2.

Ans: Here, we have 3x+2y2z=3,x+2y+3z=6,2xy+z=2

These, equations can be written as, 

[322123211] [xyz]=[362]

Let A=[322123211] X=[xyz] & B=[362]

AX=B

X=A1B …………….. eq (i),

Now, |A|=|322123211|

|A|=3(2+3)2(16)2(14)

|A|=15+10+10

|A|=35

Here, minors of elements are 

M11=|2311|=5, M12=|1321|=5, M13=|1221|=5

M21=|2211|=0M22=|3221|=7, M23=|3221|=7

M31=|2223|=10 , M32=|3213|=11, M33=|3212|=4

Now, cofactor of an element aijisAij=(1)i+jMij.

A11=(1)1+1M11=5A12=5, A13=5

A21=0A22=7, A23=7

A31=10A32=11, A33=4

Thus, matrix formed by cofactors, say P=[55507710114]

Now, Adjoint matrix, adjA= transpose of matrix P

adjA=[P]T

adjA=[55507710114]T

adjA=[50105711574]

Now, A1 =adjA|A|

A1 =135[50105711574]

Now, X=A1B

[xyz] =135[50105711574][362]

[xyz]=135[15+0+2015+422215+42+8]

[xyz] =135[353535]

[xyz] =[353535353535]

[xyz]=[111]

On comparing, we get

x=1,y=1,z=1

Hence, values of x,y and z are 1, 1 and 1 respectively.


20. Given A=[224424215], B=[110234012], find BA and use this to solve the system of equations y+2z=7,xy=3,2x+3y+4z=17. 

Ans: Here, we have A=[224424215],B=[110234012]

BA=[110234012] [224424215]

BA=[2+4+022+04+4+0412+84+64812+2004+40+2204+10]

BA=[600060006]

BA=6[100010001]

BA=6I

B1=A6

B1=16[224424215] ……………. Eq (i) 

Also, we have xy=3,2x+3y+4z=17,y+2z=7

These, equations can be written as, 

[110234012] [xyz]=[3177]

[xyz] =[110234012]1 [3177]

[xyz] =16[224424215] [3177]                 (from eq (i))

[xyz]=16[6+342812+3428617+35] 

[xyz]=16[12624]  

[xyz]=[12666246]   

[xyz]=[214]       

On comparing, we get

x=2,y=1,z=4

Hence, values of x,y and z are 2, 1 and 4 respectively.


21. If a+b+c0 and |abcbcacab|=0, then prove that a=b=c.

Ans: Here, we have a+b+c0 and |abcbcacab|=0

|abcbcacab|=0

Applying [C1C1+C2+C3], we get

|a+b+cbca+b+ccaa+b+cab|=0

Now, taking common (a+b+c) from C1

(a+b+c)|1bc1ca1ab|=0

Applying [R2R2R1andR3R3R1], we get

(a+b+c)|1bc0cbac0abbc|=0 

Now, expanding along C1

(a+b+c)[(cb)(bc)(ab)(ac)]=0 

(a+b+c)[bcc2b2+bc(a2acab+bc)]=0 

(a+b+c)(2bcc2b2a2+ac+abbc)=0 

(a+b+c)(bcc2b2a2+ac+ab)=0 

(a+b+c)(a2+b2+c2abbcac)=0 

12(a+b+c)(2a2+2b2+2c22ab2bc2ac)=0 

(a+b+c)[a2+a2+b2+b2+c2+c22ab2bc2ac]=0 

(a+b+c)[(a2+b22ab)+(b2+c22bc)+c2+a22ac]=0 

(a+b+c)[(ab)2+(bc)2+(ca)2]=0 

Here, (a+b+c)0 

Therefore, 

(ab)2+(bc)2+(ca)2=0 

It is possible when (ab)2=0,(bc)2=0,(ca)2=0

ab=0,bc=0,ca=0 

a=b,b=c,c=a 

Thus, a=b=c.

Hence proved.


22. Prove that |bca2cab2abc2cab2abc2bca2abc2bca2cab2| is divisible by (a+b+c) and find the quotient.

Ans: Here, we have |bca2cab2abc2cab2abc2bca2abc2bca2cab2|

Applying [C1C1C2] and [C2C2C3], we get

=|bca2ca+b2cab2ab+c2abc2cab2ab+c2abc2bc+a2bca2abc2bc+a2bca2ca+b2cab2| 

=|(ba)(a+b+c)(cb)(a+b+c)abc2(cb)(a+b+c)(ac)(a+b+c)bca2(ac)(a+b+c)(ba)(a+b+c)cab2| 

Taking (a+b+c) common from C1 and C2

=(a+b+c)2|(ba)(cb)abc2(cb)(ac)bca2(ac)(ba)cab2| 

Applying R1R1+R2+R3

=(a+b+c)2|00ab+bc+caa2b2c2(cb)(ac)bca2(ac)(ba)cab2| 

Taking common (ab+bc+caa2b2c2) from R1

=(a+b+c)2(ab+bc+caa2b2c2)|001(cb)(ac)bca2(ac)(ba)cab2| 

=(a+b+c)2(a2+b2+c2abbcac)|001(cb)(ac)bca2(ac)(ba)cab2| 

=(a+b+c)(a3+b3+c33abc)|001(cb)(ac)bca2(ac)(ba)cab2| 

Expanding along R1

=(a+b+c)(a3+b3+c33abc)[(cb)(ba)(ac)(ac)] 

=(a+b+c)(a3+b3+c33abc)[bcacb2+ab(a2+c22ac)] 

=(a+b+c)(a3+b3+c33abc)(bcacb2+aba2c2+2ac) 

=(a+b+c)(a3+b3+c33abc)(a2b2c2+ab+bc+ac) 

=12(a+b+c)(a3+b3+c33abc)[(ab)2+(bc)2+(ca)2] 

Hence, the given determinant is divisible by (a+b+c).

And quotient is 12(a3+b3+c33abc)[(ab)2+(bc)2+(ca)2].


23. If x+y+z=0, prove that |xaybzcyczaxbzbxcya|=xyz|abccabbca|.

Ans: Here, we have x+y+z=0

Now, L.H.S =|xaybzcyczaxbzbxcya|

Expanding along R1

=xa(a2yzx2bc)yb(y2acb2xz)+zc(c2xyz2ab) 

=a3xyzx3abcy3abc+b3xyz+c3xyzz3abc 

=xyz(a3+b3+c3)abc(x3+y3+z3) 

=xyz(a3+b3+c3)abc×3xyz    

[if x+y+z=0, x3+y3+z3=3xyz]

=xyz(a3+b3+c33abc)    

Now, R.H.S =xyz|abccabbca|

Applying [C1C1+C2+C3], we get

=xyz|a+b+cbca+b+caba+b+cca| 

Taking common (a+b+c) from C1

=xyz(a+b+c)|1bc1ab1ca| 

Applying [R2R2R1andR3R3R1], we get

=xyz(a+b+c)|1bc0abbc0cbac| 

Now, expanding along C1, we get

=xyz(a+b+c)[(ab)(ac)(cb)(bc)] 

=xyz(a+b+c)[a2acab+bc(bcc2b2+bc)] 

=xyz(a+b+c)(a2acab+bcbc+c2+b2bc) 

=xyz(a+b+c)(a2+b2+c2abbcac) 

=xyz(a3+b3+c33abc) 

Thus, L.H.S = R.H.S

Hence proved.


Objective Type Questions (M.C.Q)

Choose the correct answer from given four options in each of the exercise from 24 to 37.

24. If |2x58x|= |6273|, then value of x is 

(A) 3                                           

(B) ±3

(C) ±6                                          

(D)  6

Ans: The correct answer is option (C).

Here, we have |2x58x|=|6273|

2x240=18+14

2x240=32

2x2=72

x2=36

x=36

x=±6

Hence, option (C) is the correct answer. 


25. The value of determinant |abb+cabac+abcaa+bc|

(A) a3+b3+c3                                      

(B) 3bc

(C) a3+b3+c33abc                          

(D) none of these

Ans: Option (D) is the correct answer.

Here, we have |abb+cabac+abcaa+bc|

Applying C3C2+C3

=|abb+cabac+abcaa+bc| 

=|abb+ca+b+cbac+aa+b+ccaa+ba+b+c| 

Taking common (a+b+c) from C3, we get

=(a+b+c)|abb+c1bac+a1caa+b1| 

Applying [R2R2R1andR3R3R1], we get

=(a+b+c)|abb+c12(ab)ab0c2a+bac0| 

Taking common (ab) from R2

=(a+b+c)(ab)|abb+c1210c2a+bac0| 

Expanding along C3

=(a+b+c)(ab)(2a+2cc+2ab) 

=(a+b+c)(ab)(cb) 

Hence, option (D) is correct.


26. The area of a triangle with the vertices (3,0),(3,0) and (0,k) is 9 sq. units. The value of k will be 

(A) 9                                                  

(B) 3 

(C) -9                                                 

(D) 6

Ans: The correct answer is option (B).

we know that, area of a triangle with vertices (x1,y1),(x2,y2) and (x3,y3) is given by 

Δ=12|x1y11x2y21x3y31|

9=12|3013010k1|

18=|3013010k1|

Expanding along C2

18=k(33)

⇒  18=6k

186=k

3=k

Thus, the value of k is 3.

Hence, option (B) is correct.


27. The determinant |b2abbcbcacaba2abb2abbcaccaaba2| equals

(A) abc(bc)(ca)(ab)                 

(B) (bc)(ca)(ab)    

(C)  (a+b+c)(bc)(ca)(ab)     

(D) None of these   

Ans: The correct answer is option (D).

Here, we have  |b2abbcbcacaba2abb2abbcaccaaba2|        

=|b(ba)bcc(ba)a(ba)abb(ba)c(ba)caa(ba)|     

Taking common (ba) from C1 and C3

=(ba)2|bbccaabbccaa| 

Applying C2C2+C3

=(ba)2|bbcaabcca|=0 

Here, two columns of determinant are identical. Thus, the value of this determinant is 0.

Hence, option (D) is the correct answer.


28. The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval π4xπ4 is 

(A) 0                                                  

(B) 2

(C) 1                                                   

(D) 3

Ans: The correct answer is option (C). 

Here, we have |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0

Applying [C1C1+C2+C3], we get

|2cosx+sinxcosxcosx2cosx+sinxsinxcosx2cosx+sinxcosxsinx|=0

Taking common (2cosx+sinx) from C1

(2cosx+sinx)|1cosxcosx1sinxcosx1cosxsinx|=0 

Applying [R2R2R1andR3R3R1], we get

(2cosx+sinx)|1cosxcosx0sinxcosx000sinxcosx|=0 

Expanding along C1

(2cosx+sinx)(sinxcosx)2=0 

(2cosx+sinx)=0or(sinxcosx)2=0 

sinx=2cosxorsinxcosx=0 

tanx=2orsinx=cosx

tanx=2ortanx=1

Also, we have π4xπ4

tanπ4tanxtanπ4

1tanx1

Thus,  tanx =2  is not possible.

Therefore, tanx =1  

x=π4

So, only one distinct real root exists.

Hence, option (C) is the correct answer.


29. If A,B and C are angles of a triangle, then the determinant |1cosCcosBcosC1cosAcosBcosA1| is equal to

(A) 0                                                         

(B) -1

(C) 1 

(D) None of these 

Ans: The correct answer is option (A). 

Here, we have |1cosCcosBcosC1cosAcosBcosA1|

Applying [C1aC1+bC2+cC3], we get

=|a+b.cosC+c.cosBcosCcosBacosCb+c.cosA1cosAa.cosB+b.cosAccosA1| 

Also, by projection rule in a triangle, we know that

a=b.cosC+c.cosB

b=acosC+c.cosA

c=a.cosB+b.cosA

Using above equations in column first, we get

=|a+acosCcosBbb1cosAcccosA1| 

=|0cosCcosB01cosA0cosA1|=0 

Since, a determinant having all elements of any column or row gives the value of determinant is zero.

Hence, option (A) is the correct answer.


30. Let f(t)=|costt12sintt2tsinttt|, then limt0f(t)t2 is equal to 

(A) 0

(B) -1

(C) 2

(D) 3

Ans: The correct answer is option (A).

Here, we have f(t)=|costt12sintt2tsinttt|

Expanding along R1

f(t)=cost(t22t2)t(2tsint2tsint)+1(2tsinttsint) 

f(t)=t2cost0+tsint 

f(t)=t2cost+tsint 

Now, limt0f(t)t2=limt0(t2cost+tsintt2)

limt0f(t)t2=limt0(cost+sintt) 

limt0f(t)t2=limt0cost+limt0(sintt) 

limt0f(t)t2=limt0cos0+1                         [limt0(sintt)=1]

limt0f(t)t2=1+1 

limt0f(t)t2=0 

Hence, option (A) is the correct answer. 


31. The maximum value of Δ=|11111+sinθ11+cosθ11| is (θR).

(A) 12                                                     

(B) 32

(C) 2                                                    

(D) 234

Ans: Here, we have Δ=|11111+sinθ11+cosθ11|

Applying [C1C1C3] and [C2C2C3], we get

Δ=|0010sinθ1cosθ01|

Now, expanding along R1

Δ=1(0sinθ.cosθ)

Δ=sinθ.cosθ

Δ=22sinθ.cosθ

Δ=12sin2θ

Also, we know that, 1sin2θ1

1212sin2θ12

12Δ12

Thus, maximum value of given determinant is 12

Hence, option (A) is the correct answer.


32. If f(x)=|0xaxbx+a0xcx+bx+c0|, then

(A) f(a)=0                                     

(B) f(b)=0   

(C) f(0)=0  

(D) f(1)=0   

Ans: The correct answer is option (C).

Here, we have f(x)=|0xaxbx+a0xcx+bx+c0|

f(a) = |00ab2a0aca+ba+c0|=2a(ab)(a+c)0

f(b)=|0ba0b+a0bc2bb+c0|=2b(ba)(bc)0

f(0)=|0aba0cbc0|=abcabc=0

f(1)=|01a1b1+a01c1+b1+c0|0

Hence, option (C) is the correct answer.


33. If A=[2λ3025113], then A1 exists if 

(A) λ=2                                        

(B) λ2          

(C) λ2  

(D) None of these

Ans: The correct answer is option (D). 

Here, we have A=[2λ3025113]            

Expanding along R1  

|A|=2(65)λ(05)3(02)   

|A|=2+5λ+6   

We know that, A1 exists, if A is non- singular matrix i.e., |A|0

Therefore, 

|A|=2+5λ+60   

5λ+80  

5λ8 

λ85 

Hence, option (D) is the correct answer. 


34. If A and B are invertible matrices, then which of the following is not correct?

(A) adjA=|A|.A1                             

(B) det(A)1=[det(A)]1

(C) (AB)1=B1A1                           

(D) (A+B)1=B1+A1                           

Ans: The correct answer is option (D).

Since, A and B are invertible matrices. So, we can say that 

(AB)1=B1A1              (it is correct)

Also, A1=1|A|(adjA)    

adjA=|A|.A1            (it is correct)

And AA1=I 

|AA1|=|I|

|A|.|A1|=1

|A1|=1|A|

det(A)1=[det(A)]1    (it is correct)

Now, (A+B)1=B1+A1

L.H.S = (A+B)1

= 1|A+B|(adjA+B)

R.H.S = B1+A1

= 1|B|(adjB)+1|A|(adjA)

Thus, L.H.S R.H.S (it is incorrect)

Hence, option (D) is the correct answer.


35. If x,y,z are all different from zero and |1+x1111+y1111+z|=0, then value x1+y1+z1 is 

(A) xyz

(B) x1.y1.z1

(C) xyz               

(D)  1

Ans: The correct answer is option (D).

Here, we have |1+x1111+y1111+z|=0

Applying C1C1C2 and C2C2C3

|x01yy10z1+z|=0

Expanding along R1

x(y+yz+z)+yz=0

xy+xyz+xz+yz=0

xy+xz+yz=xyz

xy+xz+yzxyz=1

1z+1y+1x=1

1x+1y+1z=1

x1+y1+z1=1

Hence, option (D) is the correct answer.


36. The value of the determinant |xx+yx+2yx+2yxx+yx+yx+2yx| is 

(A) 9x2(x+y) 

(B) 9y2(x+y)           

(C) 3y2(x+y)

 (D) 7x2(x+y)      

Ans: The correct answer is option (B). 

Here, we have  |xx+yx+2yx+2yxx+yx+yx+2yx|     

Applying   C1C1+C2+C3 , we get

=|3(x+y)x+yx+2y3(x+y)xx+y3(x+y)x+2yx|        

Taking common  3(x+y) from C1     

=3(x+y)|1x+yx+2y1xx+y1x+2yx| 

Applying R2R2R1 and  R3R3R1         

=3(x+y)|1x+yx+2y0yy0y2y| 

Expanding along C1

=3(x+y)(2y2+y2) 

=3(x+y)×3y2 

=9y2(x+y) 

Hence, option (B) is the correct answer.


37. There are two values of a which makes determinant, Δ=|1252a1042a|=86, then sum of these number is 

(A) 4                                                                

(B) 5

(C) – 4                                                                

(D) 9

Ans: The correct answer is option (C).

Here, we have Δ=|1252a1042a|=86

|1252a1042a|=86

Expanding along R1

1(2a2+4)+2(4a0)+5(80)=86

2a2+4+8a+40=86

2a2+8a+44=86

2a2+8a+4486=0

2a2+8a42=0

a2+4a21=0

a2+7a3a21=0

a(a+7)3(a+7)=0

(a+7)(a3)=0

(a+7)=0or(a3)=0

a=7ora=3

Here, values of a are 7 and 3.

Therefore, sum of these values = 7+3=4

Hence, option (C) is the correct answer.                                                   


Fill in the blanks 

38. If A is a matrix of order, 3×3, then |3A|= …………………

Ans: Here, A is a matrix of order, 3×3.

And we know that, |λA|=λn|A| , here n is the order of the matrix and λ is a constant.

Therefore, 

|3A|=33|A|=27|A|

 Hence, If A is a matrix of order, 3×3, then |3A|=27|A|.


39. If A is invertible matrix of order 3×3, then |A1|=…………….

Ans: Here, A is invertible matrix of order 3×3

Therefore, 

AA1=I 

|AA1|=|I|

|A|.|A1|=1

|A1|=1|A|

Hence, If A is invertible matrix of order 3×3, then |A1|=1|A|


40. If x,y,zR, then the value of determinant |(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21| is equal to ………. .

Ans: Here, we have |(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|, where x,y,zR,

Applying C1C1C2,we get

=|(2x+2x)2(2x2x)2(2x2x)21(3x+3x)2(3x3x)2(3x3x)21(4x+4x)2(4x4x)2(4x4x)21|

=|4.2x.2x(2x2x)214.3x.3x(3x3x)214.4x.4x(4x4x)21|               [(a+b)2(ab)2=4ab]

=|4(2x2x)214(3x3x)214(4x4x)21|

Taking common 4 from C1

=|1(2x2x)211(3x3x)211(4x4x)21|=0

Since, a determinant having all elements of any column or row gives the value of determinant is zero.

Hence, then the value of determinant |(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21| is equal to 0.


41. If cos2θ=0, then |0cosθsinθcosθsinθ0sinθ0cosθ|2= …………….

Ans: Here, we have cos2θ=0

cos2θ=cos90

2θ=90

θ=45…………….. (i)

Also, we have  |0cosθsinθcosθsinθ0sinθ0cosθ|2

Expanding along R1

= [0cosθ(cos2θ0)+sinθ(0sin2θ)]2

=[cos3θsin3θ]2

=[cos3θ+sin3θ]2

=[(12)3+(12)3]2

=[122+122]2

=[12]2

=12

Hence, If cos2θ=0, then |0cosθsinθcosθsinθ0sinθ0cosθ|2=12.


42. If A is a matrix of order 3×3, then (A2)1=…………..

Ans: If A is a matrix of order 3×3, then (A2)1= (A1)2.


43. If A is a matrix of order 3×3, then the number of minors in the determinant of A are …………….. .

Ans: If A is a matrix of order 3×3, then the number of minors in determinant of A are 9. because, in a 3×3 matrix, there are 9 elements.


44. The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ………….. .

Ans: The sum of the products of elements of any row with the co-factors of corresponding elements is equal to the value of determinant.

Let Δ=|a11a12a13a21a22a23a31a32a33|

Expanding along R1

Δ=a11(a22.a33a23.a32)a12(a21.a33a23.a31)+a13(a21.a32a22.a31)

Δ=a11(a22.a33a23.a32)+a12(a23.a31a21.a33)+a13(a21.a32a22.a31)

Δ=a11A11+a12A12+a13A13

Δ= sum of the products of elements of R1 with their corresponding cofactors.


45. If x=9 is a root of |x372x276x|=0, then the other two roots are ……..

Ans: Here, we have x=9 is a root of |x372x276x|=0

|x372x276x|=0

Expanding along R1, we get

x(x212)3(2x14)+7(127x)=0

x312x6x+42+8449x=0

x312x6x+42+8449x=0

x367x+126=0

x3+9x29x281x+14x+126=0

x2(x+9)9x(x+9)+14(x+9)=0

(x+9)(x29x+14)=0

(x+9)(x7)(x2)=0

x=9,7,2

Hence, other two roots of |x372x276x|=0 are 7 and 2.


46. |0xyzxzyx0yzzxzy0|= ………….

Ans: Here, we have |0xyzxzyx0yzzxzy0|

Applying C1C1C3, we get

=|zxxyzxzzx0yzzxzy0| 

Taking common (zx) from C1

=(zx)|1xyzxz10yz1zy0| 

Applying [R2R2R1andR3R3R1], we get

=(zx)|1xyzxz0xyzyx0zyxyzzx| 

Expanding along C1

=(zx)[xyz(zx)(yx)(zyxyz)] 

=(zx)[xyz2+x2yz(yzy2xy2zxz+xy+x2yz)] 

=(zx)[xyz2yz+y2+xy2z+xzxy] 

=(zx)[y2yz+xy2zxyz2+xzxy] 

=(zx)[y(yz)+xyz(yz)x(yz)] 

=(zx)(yz)(y+xyzx) 

Hence, |0xyzxzyx0yzzxzy0|=(zx)(yz)(y+xyzx).


47. If f(x) =|(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47| = A+Bx+Cx2 …, then A = ………….

Ans: Here, we have f(x)=|(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47|

Taking common (1+x)17,(1+x)23,(1+x)41 from R1,R2 and R3 respectively, we get

=(1+x)17.(1+x)23.(1+x)41|1(1+x)2(1+x)61(1+x)6(1+x)111(1+x)2(1+x)6| 

= 0.

Here, R1&R3 are identical, 

Thus, f(x)=|(1+x)17(1+x)19(1+x)23(1+x)23(1+x)29(1+x)34(1+x)41(1+x)43(1+x)47|=0.

Hence, the value of A is 0.

State True or False for the statements of the following Exercises:


48. (A3)1=(A1)3, where A is square matrix and |A|0.

Ans: Here, the given statement is true.

Since, (An)1=(A1)n, where nN.


49. (aA)1=1aA1, where a is any real number and A is a square matrix.

Ans: Since, we know that, if A is a non- singular square matrix, then for any scalar a (non – zero), aA is invertible such that 

(aA)=(1aA1)=(a.1a)(AA1) i.e., (aA) is inverse of (1aA1) or (aA)1=1aA1, where a is any non -zero scalar false. 

In the above statement, a is any real number. So, we can conclude that above statement is false.


50. |A1||A|1, where A is non – singular matrix.

Ans: Since, |A1|=|A|1, where A is non – singular matrix.

Hence, the given statement is false.


51. If A and B are the matrices of order 3 and |A|=5, |B|=3, then |3AB| =27×5×3=405.

Ans: Here, A and B are the matrices of order 3 and |A|=5,|B|=3

|3AB|=33×|A|×|B|

|3AB|=27×5×3

|3AB|=405

Hence, the given statement is true.


52. If the value of a third order determinant is 12, then the value of the determinants formed by replacing each element by its co – factor will be 144. 

Ans: let A be the determinant, |A|=12

Also, we know that, if A is the square matrix of order n, 

then |AdjA|=|A|n1

|AdjA|=(12)31

|AdjA|=(12)2

|AdjA|=144

Hence, the given statement is true.


53. |x+1x+2x+ax+2x+3x+bx+3x+4x+c|=0, where a,b,c are in A.P.

Ans: Here, we have |x+1x+2x+ax+2x+3x+bx+3x+4x+c|

Applying C1C1C2, we get

=|1x+2x+a1x+3x+b1x+4x+c| 

Applying R2R2 R1 and R3  R3 R1 , we get

=|1x+2x+a01ba02ca| 

Expanding along C1

=1[(ca)2(ba)] 

=1(ca2b+2a] 

=1(c2b+a] 

Since, a,b and c are in A.P. 

Therefore, 2b=a+c

=1(2b2b) 

= 0.

Hence, the given statement is true.


54. |adj.A|=|A|2, where A is a square matrix of order two.

Ans: Here, A is square matrix of order two

We know that, 

A.AdjA=|A|I 

|A.AdjA|=||A|I| 

|A||AdjA|=|A|n 

|AdjA|=|A|n|A| 

|AdjA|=|A|n1  

Here, n=2

|AdjA|=|A|21 

|AdjA|=|A| 

Hence, the given statement is false.


55. The determinant |sinAcosAsinA+cosBsinBcosAsinB+cosBsinCcosAsinC+cosB| is equal to zero.

Ans: Here, we have |sinAcosAsinA+cosBsinBcosAsinB+cosBsinCcosAsinC+cosB|

=|sinAcosAsinAsinBcosAsinBsinCcosAsinC| + |sinAcosAcosBsinBcosAcosBsinCcosAcosB| 

Since, the value of the determinant having two identical rows and columns is zero. Therefore, 

=0+|sinAcosAcosBsinBcosAcosBsinCcosAcosB| 

=|sinAcosAcosBsinBcosAcosBsinCcosAcosB| 

Taking common cosA and cosB from C2 and C3

=cosA.cosB|sinA11sinB11sinC11| 

=0 

Since, the value of the determinant having two identical rows and columns is zero. 

Hence, the given statement is true.


56. If the determinant |x+ap+ul+fy+bq+vm+gz+cr+wn+h| splits into exactly K determinants of order 3, each element of which contains only one term, then the value of K is 8.

Ans: Here, we have |x+ap+ul+fy+bq+vm+gz+cr+wn+h|

Now, splitting first row in the sum of two determinant

=|xply+bq+vm+gz+cr+wn+h| +|aufy+bq+vm+gz+cr+wn+h| 

Now, splitting second row in the sum of two determinants =|xplyqmz+cr+wn+h| + |xplbvgz+cr+wn+h| + |aufyqmz+cr+wn+h| + |aufbvgz+cr+wn+h| 

Similarly, we can split these 4 determinants in 8 determinants by splitting each one in two determinants.

Hence, the given statement is true.


57. Let Δ=|apxbqycrz|=16, then Δ1=|p+xa+xa+pq+yb+yb+qr+zc+zc+r|=32.

Ans: Here, we have Δ=|apxbqycrz|=16 …….. (i)

Now, Δ1=|p+xa+xa+pq+yb+yb+qr+zc+zc+r|

Applying C1C1+C2+C3, we get

Δ1=|2(p+x+a)a+xa+p2(q+y+b)b+yb+q2(r+z+c)c+zc+r|

Taking common 2 from C1

Δ1=2|(p+x+a)a+xa+p(q+y+b)b+yb+q(r+z+c)c+zc+r|

Applying C1C1C2 ,and C2C2C3we get

Δ1=2|pxpa+pqyqb+qrzrc+r|

Applying C2C1+C2

Δ1=2|pxa+pqyb+qrzc+r|

Δ12=|pxaqybrzc|+|pxpqyqrzr|

Δ12=|pxaqybrzc|+0

Since, the value of the determinant having two identical rows and columns is zero. 

Δ1=2|pxaqybrzc|

Δ1=2.(1)2|apxbqycrz|

Δ1=2×16=32                              (from eq (i))

Hence, the given statement is true.


58. The maximum value of |11111+sinθ1111+cosθ| is 12.

Ans: Here, we have Δ=|11111+sinθ1111+cosθ|

Applying [C1C1C3] and [C2C2C3], we get

Δ=|0010sinθ1cosθcosθ1|

Now, expanding along R1

Δ=1(0+sinθ.cosθ)

Δ=sinθ.cosθ

Δ=22sinθ.cosθ

Δ=12sin2θ

Also, we know that, 1sin2θ1

1212sin2θ12

12Δ12

Thus, maximum value of given determinant is 12

Hence, the given statement is true.


Determinants

Determinants are the fourth Chapter of NCERT Exemplar Solutions for Class 12 Mathematics. Introduction to Determinants, then a Determinant Matrix of order one, two, or three, properties of the Determinant, minors and cofactor, adjoint and inverse of a Matrix, applications of Matrices, and solution of a System of Linear Equations using the inverse of a Matrix are all covered in this Chapter.


Students can also utilize Vedantu NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions)  PDF from the links on the Vedantu site to learn and comprehend all of the fundamentals of Determinants in a simple way.

WhatsApp Banner

FAQs on NCERT Exemplar for Class 12 Maths Chapter-4 (Book Solutions)

1. How will NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) help you?

NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) will assist you in understanding how to calculate the Determinant of different Square Matrices, Co-factors, and the Inverse of Matrices, among other things. Students can use NCERT Exemplar Class 12 Maths Chapter 4 solutions to gain a better understanding of Matrices and how to answer them uniquely. Chapter 4 of NCERT Class 12 Maths solutions can be highly important in terms of scoring for students in the 12th grade. Learners can access the topic and solutions offline using the NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) download.

2. What are the applications of the NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants?

Determinants are Matrices that are answered in Chapter 3 of the NCERT Maths book for 12th grade. Studying Determinants is about preparing for further education in any discipline of Math, science, economics, and so on, not just passing tests. Students will study Determinants, their elements, and how to compute Determinants of various square Matrices in NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions).

This Chapter will not only help you boost the score in your final Exams but also has very important applications in various other fields including Physics and other principles to determine various values in the calculation.

3. What are the different sub topics covered in the NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions)?

The different sub topics covered in the NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) includes:

  • 4.1 The Beginning 

  • 4.2 Factor to consider

  • 4.2.1 Determinant of a one-dimensional Matrix

  • 4.2.2 Determinant of a two-dimensional Matrix

  • 4.2.3 The Determinant of a 3x3 Matrix

  • 4.3 Determinant properties

  • 4.4 Triangle surface area

  • Minors and co-factors (4.5)

  • 4.6 A Matrix's adjoint and inverse

  • 4.6.1 Matrix adjacency

  • 4.7 Matrix and Determinant Applications

  • 4.7.1 Using the inverse of Matrices to solve a system of linear equations

4. What are the various advantages of NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions)?

Vedantu's solution will assist you in locating a detailed NCERT Exemplar for Class 12 Maths Chapter 4 Determinants (Book Solutions)  answers to the questions presented in the NCERT exemplar book. We don't miss stages or try to solve questions in a quick or easy method instead, our professional guides will assist you in answering each question in the most minute detail possible.

The wording used to answer the questions is straightforward to comprehend. Not only are the problems thoroughly answered, but we also keep a marking system in mind to help our students improve their grades.

NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) will assist you in building confidence in your ability to solve more difficult problems. Students will be helped to understand the issues and their complexities by detailed procedures written in simple language.

5. What are some of the most important concepts covered in the NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions)?

Some of the most important concepts students learn from the  NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) includes a better understanding of how Determinants interact with Matrices. The students are taught and practise Matrices, as well as how to use them to represent linear equations. Students can get the Determinants of various square Matrices in the following ways:

The order one Determinant - The order two Determinant - The order 3x3 Determinants. The Determinants and their properties up to order 3 will be covered, as well as how to get the area of a triangle by transforming the vertices into Determinants. Students will learn how to extend Determinants in the form of cofactors and minors in certain themes. NCERT Exemplar for Class 12 Maths Chapter 4 - Determinants (Book Solutions) also covers the principles of Determinants of different Matrices.