Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 12 Maths Chapter 5 (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 12 Maths - Continuity And Differentiability - Free PDF Download

Free PDF download of NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability solved by expert Maths teachers on Vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 5 - Continuity And Differentiability Exercise questions with solutions to help you to revise the complete syllabus and score more marks in your Examinations.


NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions) is useful for students as it allows them to become familiar with different types of questions and, as a result, develop problem-solving skills. Students can use the NCERT Exemplar Solutions, which are provided subject-by-subject, to help them solve the Exercise questions in each Chapter. All of the answers are created following the most recent CBSE criteria for students to score well.


NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)  is an important Chapter as it establishes the groundwork for Differential Calculus. Continuity, Differentiability, Algebra of Continuous Functions, Derivatives of Composite Functions, Implicit Functions, and Inverse Trigonometric Functions, Exponential and Logarithmic Functions, Logarithmic Differentiation, Derivatives of Functions in Parametric forms, second-order Derivative, and mean value theorem are some of the topics covered in this Chapter. The answers to the Chapter's Exercise problems are also available on the Vedantu website and app in PDF format.

Courses
Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for Class 12 Mathematics Chapter 5 - Continuity and Differentiability

Solved Examples 

Short Answer Questions 

1. Find the value of the constant k so that the function f defined below is continuous at x = 0, where

f(x)={1cos 4x8x2, at x0k, at x=0

Ans: Here, It is given that the function f is continuous at x = 0. Therefore, limx0f(x) = f(0)

limx01cos 4x8x2=k

limx02sin22x8x2=k

limx0(sin2x2x)2=k

k=1

Hence the value of k = 1 


2. Discuss the continuity of the function f(x) = sin x. cos x.

Ans: As we know that sin x and cos x are continuous functions and the product of two continuous functions is always a continuous function.

Hence, f(x) = sin x . cos x is a continuous function.


3. f(x)={x3+x216x+20(x2)2,x2k, x=2 is continuous at x =2, Find the value of k .

Ans: Given f (2) = k. 

Now, limx2f(x) = limx2+f(x) = limx2x3  + x2 16x + 20(x2)2

limx2(x+5)(x2)2(x2)2

limx2(x+5) = 7

Now since f is continuous at x = 2, we have

limx2f(x) = f(2)

 k = 7


4. Show that the function f defined by f(x)={xsin1x, x00, x=0 is continuous at x = 0

Ans: Left hand limit at x = 0 is given by 

limx0f(x) = limx0xsin1x = 0

Similarly , limx0+f(x) = limx0+xsin1x = 0

Also f(0) = 0

Hence limx0f(x) = limx0+f(x) = f(0) 

f is continuous at x = 0


5. Given f(x) = 1x1. Find the points of discontinuity of the composite function y = f[f(x)]

Ans: We know that f (x) = 1x1 is discontinuous at x = 1 Now, for x ≠ 1,

f (f (x)) = f(1x1) = 11x11 = x12x

which is discontinuous at x = 2. 

Therefore, the points of discontinuity are x = 1 and x = 2. 


6. Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0

Ans: We may rewrite f as f(x)={x2,if x0x2, if x<0 

We know that 

Lf ′ (0) = limx0f(0h)  f(0)h = limx0h2 0 h = limx0-h = 0

Rf ′ (0) = limx0+f(0+h)  f(0)h = limx0+h2 0 h = limx0+h = 0

Now clearly, the left hand derivative and right hand derivative both are equal, Therefore , f is differentiable at x = 0.


7. Differentiate tanx w.r.t x

Ans: Let us consider y = tanx 

dydx = 12tanxddxtanx

=12tanxsec2xddxx

 =12tanxsec2x12x

=sec2x4xtanx


8. If y = tan(x + y), find dydx .

Ans: Here, y = tan (x + y).

On differentiating both sides w.r.t. x, we have

dydx = ddxtan(x+y)

dydx = sec2(x+y) ddx(x+y)

dydx = (1+dydx) sec2(x+y) 

dydx = sec2(x+y) + dydxsec2(x+y) 

dydx - dydxsec2(x+y)  = sec2(x+y) 

(1sec2(x+y) )dydx = sec2(x+y) 

dydx = sec2(x+y) 1sec2(x+y)  = - cosec2(x+y)

Hence, dydx = - cosec2(x+y)


9. If ex + ey = ex+y, Prove that dydx = - eyx.

Ans: Here we have , ex+ ey = ex+y.

On Differentiating both sides w.r.t x , we get 

ddx (ex+ ey) = ddxex+y

ex + eydydx = ex+yddx(x+y)

ex + eydydx = (1+dydx)ex+y

ex + eydydx =  ex+y + ex+ydydx

(ey - ex+y)dydx = ex+y- ex 

dydx = ex+y ex ey  ex+y 

dydx=ex + ey  ex ey  ex  ey  [ex+ey=ex+y]

dydx = -eyx

Hence Proved.


10. Find dydx if y = tan1(3x x3)13x2, - 13 <x <13

Ans: Let us put x = tanθ ⇒ θ = tan1

so, y = tan1(3 tanθ   tan3θ )13 tan2θ 

We know that tan3θ = (3 tanθ   tan3θ )13 tan2θ 

y=tan1tan3θ 

y=3θ  (π2<3θ<π2)

y=3tan1

Now on differentiating both sides w.r.t x 

dydx = ddx(3tan1x)

dydx = 311+x2

Hence, dydx = 31+x2


11. If y = sin1{x1x  x1x2} and 0 < x < 1, then find dydx.

Ans: we have 

y = sin1{x1x  x1x2 } ; 0<x<1

Now, let's put x = sinA and x = sinB

y = sin1 {sinA1sin2B  sinB1sin2A

= sin1 {sinAcosB - sinBcosA }

= sin1 { sin(A - B) } = A – B

y = sin1x – sin1x

On Differentiating w.r.t to x , we get

dydx = 11x2 - 11x2.ddx(x)

= 11x2 - 12x .1x

Therefore , dydx = 11x2 - 12x .1x


12. If x = asec3θ  and y = atan3θ , find dydx at θ = π3

Ans: we have x = asec3θ  and y = a tan3θ 

On Differentiating both sides w.r.t θ

dxdθ = 3asec2θ secθ.tanθ 

and dydθ = 3atan2θ sec2θ

Now, dydx = dydθdxdθ = 3atan2θ sec2θ3asec2θ secθ.tanθ  = sinθ

At θ = π3

dydx = sin π3 = 32

Hence, 

dydx = 32 , at θ = π3


13. If xy = e(xy), Prove that dydx = log x (1+logx)2

Ans: we have ,

xy = e(xy)

Taking log on both the sides we get ,

log(xy) = log(exy)

⇒y log x = (x-y)loge      

⇒y log x = (x-y).1

⇒y (log x +1) = x 

y=x1+logx

Using Quotient Rule , we get 

dydx = (1+logx).ddx(x)x.ddx(1+logx)(1+logx)2

dydx =  (1+logx)1(1+logx)2 

dydx = log x (1+logx)2

Hence Proved.


14. If y = tanx + secx, prove that d2ydx2 = cosx(1sinx)2 

Ans: we have, 

y = tanx + secx

On differentiating both sides w.r.t x , we get 

dydx = ddx ( tanx ) + ddx ( secx )

dydx = sec2x + secx.tanx 

dydx = 1cos2x + sinxcos2x = 1+sinxcos2x 

dydx = 1 + sinxcos2x 

dydx = 1 + sinx1sin2x 

dydx = 1 + sinx(1+sinx)(1sinx) 

dydx = 1 (1sinx) 

Again Differentiating both sides w.r.t x

d2ydx2 = (cosx)(1sinx)2 

d2ydx2 = cosx(1sinx)2 

Hence Proved .


15. If f(x) = |cosx|, find f’ (3π4)

Ans: we know that cosx < 0 when π2 < x < π

 |cosx| = -cosx 

so , f(x) = -cosx 

 f’(x) = sinx 

Therefore, f’ (3π4) = sin3π4

  f’ (3π4) = 12

Hence Proved 


16. If f(x) = |cosx-sinx |, find f’(π6)

Ans: we know that cosx > sinx when 0 < x <π4

 cos x – sin x > 0 

so, f(x) = cosx - sinx 

f’(x) = – sin x – cos x

Therefore, f’ (π6) = -sinπ6 - cosπ6

f’ (π6) = 12(1+3)

Hence Proved 


17. Verify Rolle’s theorem for the function, f (x) = sin 2x in [0,π2]

Ans: we have,

f (x) = sin 2x in [0,π2] 

The given function is continuous in [0,π2] as f is a sine function.

f’(x) = 2cos2x , exists in (0,π2), hence f is differentiable in (0,π2) 

f(0) = sin 0 = 0 and f(π2)= sinπ2 = 0 

f(0) = f(π2)

Since, all the conditions of Rolle’s theorem are satisfied , so there exists a c ∈

(0,π2) such that f’(c) = 0 

f’(x) = 2cos2x 

⇒f’(c) = 2cos2c = 0 

⇒cos2c = 0 

⇒2c = π2

⇒c = π4


18. Verify mean value theorem for the function f (x) = (x – 3) (x – 6) (x – 9) in [3,5]

Ans: (i) Given function f(x) is continuous in [3,5] as the product of polynomial functions is a polynomial and all polynomial functions are continuous 

(ii) f ′(x) = 3x2 – 36x + 99 exists in (3, 5) and hence is derivable in (3, 5).

Thus conditions of the mean value theorem are satisfied. Hence, there exists at least one c ∈ (3, 5) such that

f’(c) = f(5)  f(3)53 

⇒3c2 – 36c + 99 = 802 

⇒3c2 – 36c + 99 = 4

⇒3c2 – 36c + 95 = 0

⇒c = 6±133

⇒c  6 +133

Therefore , c =  6 133


Long Answers (L.A.)

19. If f (x) = 2cosx 1cotx1 , x π4, Find the value of f(π4) so that f(x) becomes continuous at x = π4

Ans: we have f (x) = 2cosx 1cotx1 , x π4 

limx  π4f(x) = limx  π42cosx 1cotx1 

= limx  π4(2cosx 1)sinxcosx  sinx 

= limx  π4(2cosx 1)cosx  sinx (2cosx +1) (cosx +sinx)sinx(2cosx +1)(cosx +sinx)

= limx  π4(2cos2x 1)(cosx +sinx)(cos2x  sin2x)(2cosx +1).sinx 

= limx  π4cos2x(cosx +sinx)cos2x(2cosx +1).sinx 

= limx  π4(cosx +sinx)(2cosx +1).sinx 

=  (12+12)12.2+112 = 12

Therefore, limx  π4f(x) = 12

Hence , for f to be continuous at x = π4 , f(π4) should be equal to 12 

i.e. f(π4) = 12


20. Show that the function f given by f(x)={e1x 1e1x +1, if x00, if x=0 is discontinuous at x =0.

Ans: The left hand limit of f at x = 0 is given by

limx  0f(x) = limx  0e1x 1e1x +1 = 010+1 = -1

Similarly,

limx  0+f(x) = limx  0+e1x 1e1x +1 = 101+0 = 1

Therefore,

limx  0f(x) limx  0+f(x) , hence limx  0f(x) does not exist .

f is discontinuous at x = 0


21. Let f(x)={1cos4xx2, if x0a,if x=0x16+x4,if x>0 For what value of a , f is continuous at x = 0 ?

Ans: Here f (0) = a Left hand limit of f at 0 is 

limx  0f(x) = limx  01cos4xx2 

= limx  02sin22xx2

=  limx  08.(sin2xx)2 

= 8.(1)2 

= 8

Now, limx  0+f(x) = limx  0+x16 + x  4

= limx  0+x(16 + x +4)(16 + x  4)(16 + x + 4)

= limx  0+x(16 + x +4)(16 + x  4)(16 + x + 4)

= limx  0+x(16 + x +4)(16 +x  16)

 = limx  0+x(16 + x +4)x

=limx  0+(16 + x +4

= 8

Therefore, limx  0f(x) = limx  0+f(x) = 8 , hence f is continuous at x = 0 only if a = 8.


22. Examine the differentiability of the function f defined by

f(x)={2x+3,, if 3x<2x+1, if 2x<0x+2, if 0x1

Ans: The points where differentiability can't be directly predicted of f (x) are x = – 2 and x = 0.

Let us find Differentiability at x = – 2 and at x = 0 

Differentiability at x = – 2

L.H.D = f’(-2) = limh0f(2+h)  f(2) h

= limh02(2+h) +3  (2+1) h

= limh02hh

= 2

R.H.D = f’(-2) = limh0+f(2+h)  f(2) h

= limh0+2+h+1   (2+1) h

= limh0+hh

= 1

Clearly, L.H.D ≠ R.H.D

f(x) is not differentiable at x = – 2

Now , Differentiability at x = 0

L.H.D = f’(0) = limh0f(2+h)  f(2) h

= limh0f(0+h)  f(0) h

= limh0(0+h+1)  (0+2) h

= limh0h1 h

= limh0(11h

which does not exist. Hence f is not differentiable at x = 0.

Therefore, f(x) is not differentiable at points x = -2 and x = 0


23. Differentiate  u = tan1(1x2x) w.r.t v= cos1(2x1x2) , where x(12, 1).

Ans: Given,

 u = tan1(1x2x) and v =  cos1(2x1x2) 

we have,  u = tan1(1x2x) 

Put x = sinθ , where π4 < θ < π2

 u = tan1(1sin2θ sinθ ) 

 u = tan1(cosθsinθ ) 

 u = tan1(cotθ) 

 u = tan1(tan(π2θ) 

 u = (π2θ) 

 u = (π2sin1x) 

On differentiating both sides w.r.t x

dudx = 11x2    ….......…eqn (1)

Now, v =  cos1(2x1x2)

v = π2 sin1(2x1x2)

Again, Put x = sinθ , where π4 < θ < π2

v =  π2sin1(2sinθ 1 sin2θ )

⇒v =  π2sin1(2sinθcosθ)

⇒v =  sin1(sin2θ)

⇒v = 2θ

⇒v =  2sin1x

On differentiating both sides w.r.t x

dvd x= 21x2     ……………..eqn(2)

Therefore, 

dudv = dudxdvd x = 11x221x2    …from eqn(1) & eqn(2)

dudv = 12


Objective Type Questions

24. The function f (x) = f(x)={sinxx+cosx, if x0k, if x=0 is continuous at x = 0, then the value of k is

(A) 3

 (B) 2 

(C) 1 

(D) 1.5

Ans: Since the function f(x) is continuous at x = 0 

 L.H.L = R.H.L = f(0) 

limx0+(sinxx+cosx) + cosx = f(0)

Put x = 0 +h 

limh0(sinhh+cosh) = k

Using identities : limx0sinxx = 1 and limx0cosx = 1

1 +1 = k

k = 2 

Therefore, the value of k = 2 

Hence, the correct option is (B)


25. The function f (x) =[x], where [x] denotes the greatest integer function, is continuous at 

(A) 4

 (B) – 2 

(C) 1 

(D) 1.5

Ans: The greatest integer function f(x) = [x] is discontinuous at all integral values of x. 

Hence the correct option is (D)


26. The number of points at which the function f (x) = 1x[x] is not continuous is

(A) 1 

(B) 2 

(C) 3 

(D) none of these

Ans: As we know that 1x[x]=0, when x is an integer therefore f (x) is discontinuous for all x ∈ Z.

Hence, the correct option is (D)


27. The function given by f (x) = tanx is discontinuous on the set 

(A) {π :nZ}

(B) {2n π :nZ}

(C) {(2n+1) π 2:nZ}

(D) {π 2:nZ}

Ans: f (x) = tanx is always discontinuous on the set {(2n+1) π 2:nZ}

Hence the correct option is (C)


28. Let f (x)= |cosx|. Then,

(A) f is everywhere differentiable.

(B) f is everywhere continuous but not differentiable at x = nπ, n ∈Z .

(C) f is everywhere continuous but not differentiable at x = (2n+1)π2 , n ∈Z

(D) none of these

Ans: We have 

f (x)= |cosx| 

Here, f is everywhere continuous but not differentiable at x = (2n+1)π2 , n ∈Z

Hence the correct option is (C)


29. The function f (x) = |x| + |x – 1| is

(A) continuous at x = 0 as well as at x = 1.

(B) continuous at x = 1 but not at x = 0. 

(C) discontinuous at x = 0 as well as at x = 1. 

(D) continuous at x = 0 but not at x = 1.

Ans: f (x) = |x| + |x – 1| is continuous at x = 0 as well as at x = 1.

Hence the correct option is (A).


30. The value of k which makes the function defined by f(x)={Sin1x, if x0k, if x=0, continuous at x=0 is 

(A) 8

(B) 1 

(C) –1

(D) none of these

Ans: As we know that limx0sin1x does not exist 

Hence the correct option is (D)


31. The set of points where the functions f given by f (x) = |x – 3|cos x is differentiable is

(A) R 

(B) R – {3} 

(C) (0, ∞) 

(D) none of these

Ans: The set of points where the functions f given by f (x) = |x – 3| cosx is differentiable is R – {3} 

Hence the correct option is (B)


32. Differential coefficient of sec (tan1x) w.r.t. x is

(A) x1+x2

(B) x1+x2

(C) x1+x2

 (D) 11+x2

Ans: Let y = sec (tan1x)

On Differentiating both sides w.r.t x 

dydx = ddx sec (tan1x)

 =  sec (tan1x). tan(tan1x).ddx(tan1x)

= x. sec (tan1x).11+x2

Clearly the differential coefficient of sec (tan1x) is x1+x2

Hence the correct option is (B)


33.If u = sin1(2x1+x2) and v = tan1(2x1x2) , then dudv is 

(A) 12

(B) x 

(C) 1x21+x2

(D) 1

Ans: Given u = sin1(2x1+x2) and v = tan1(2x1x2) 

we have , 

u = sin1(2x1+x2)

Put x = sinθ 

⇒u = sin1(2sinθ 1+sin2θ)

⇒u = sin1(sin2θ)

⇒u = 2θ

dudθ = 2        .. eqn (1)

Now, we have ,

v = tan1(2x1x2)

put v = tanθ

v = tan1(2 tanθ1 tan2θ)

⇒v = tan1(tan2θ)

⇒v= 2θ

dvdθ = 2        ...…eqn(2)

Dividing equation (1) by (2)

dudθdvdθ = 22  = 1

dudv = 1 

Hence the correct option is (D).


34. The value of c in Rolle’s Theorem for the function f (x) = ex sinx, x∈[0,π] is

(A) π6

(B) π4

(C) π2

(D) 3π4

Ans: We Know that by Rolle's Theorem that a function f(x) is continuous on [a,b] and differentiable in (a,b) then there exists c (a,b) such that f’(c) = 0 

We have , 

f (x) = ex sinx, x∈[0,π] is

f’(x) = ex sinx + ex cosx

f’(c) = ec(sinx + cosx) = 0 

Now we know that ec 0

 tanc = -1 

c = 3π4

Hence option (D) is the correct answer.


35. The value of c in Mean value theorem for the function f (x) = x (x – 2), x ∈[1,2] is

(A) 32 

(B) 23 

(C) 12 

 (D) 32 

Ans: We have,

 f (x) = x (x – 2)

 f (x) = x22x

Since the polynomial function is always continuous and differentiable 

f (x) = x22x is always continuous on [1,2] and differentiable in (1,2)

Now since, f(x) satisfies both the conditions of Mean Value Theorem there exist a real number c (1,2) such that 

f’(c) = (f(2) f(1)21)

⇒f’(c) = (f(2) f(1)1)

⇒f’(c) = f(2) -f(1)

⇒f’(c) = f(2) -f(1)

we have f(x) = x22x

f’(x) = 2x -2 

⇒f’(c) = 2c -2 

⇒f(2) -f(1) = 2c -2 

(222×2) - (122×1) = 2c -2 

⇒0 -(-1) = 2c -2 

⇒2c = 1 +2 

⇒c = 32 

Clearly c = 32 (1,2)

Hence option (A) is the correct answer


36. Match the following  

Column-I   

Column-II

(A) If a function f(x)={sin3xx, if x0k2, if x=0

is continuous at x = 0, then k is equal to

(a) |x|

(B) Every continuous function is differentiable 

(b) True

(C) An example of a function which is continuous 

(c) 6

(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function.

(d) False


Ans:  Ac, Bd, Ca, Db


Fill in the blanks in each of the Examples 37 to 41

37. The number of points at which the function f (x) =1log|x|  is discontinuous ________.

Ans: The given function is discontinuous at x = 0, ± 1 and hence the number of points of discontinuity is 3.

Therefore, The number of points at which the function f (x) =1log|x|  is discontinuous is 3


38.If f(x) = ax+1 , x 1 and f(x) = x+2, x <1  is continuous, then a should be equal to _______.

Ans: If f(x) = ax+1 , x 1 and f(x) = x+2, x <1 

is continuous, then a should be equal to 2.


39. The derivative of log10x w.r.t. x is ________.

Ans: The derivative of log10x w.r.t. x is log10e.1x 


40. If y = sec1x+1x1 + sin1x1x+1 , then dydx is equal to ________

Ans: y = sec1x+1x1 + sin1x1x+1, then dydx is equal to 0


41. The derivative of sin x w.r.t. cos x is ________

Ans: The derivative of sin x w.r.t. cos x is -cotx


State whether the statements are True or False in each of the Exercises 42 to 46.

42. For continuity, at x = a, each of limxa+f(x) and limxa_f(x) is equal to f(a).

Ans: We know that for a continuous function at x = a 

L.H.L = R.H.L = f(a) 

limxaf(x) = limxa+f(x) = f(a)

Hence the given statement is True.


43. y = |x – 1| is a continuous function .

Ans: Yes, y = |x – 1| is a continuous function .

Hence the given statement is True.


44. A continuous function can have some points where the limit does not exist.

Ans: A continuous function can never have some points where the limit does not exist. 

Hence the given statement is False .


45. |sinx| is a differentiable function for every value of x.

Ans: |sinx| is not a differentiable function for every value of x.

Hence the given statement is False


46. cos|x| is differentiable everywhere. 

Ans: Yes, cos |x| is differentiable everywhere.

Hence the given statement is True.


Exercise

Short Answer Type Questions

1. Examine the continuity of the function f(x)=x3+2x21 at x=1.

Ans: Given that f(x)=x3+2x21 we must check continuity at

x=1

RHL=f(x)  

=limx1+(x3+2x21) ; here, x=1+h, h0 

=limh0(1+h)3+2(1+h)21

=1+21 

RHL=2 

LHL=f(x)  

=limx1(x3+2x21) ; here, x=1h, h0 

=limh0(1h)3+2(1h)21

=1+21 

LHL=2 

f(1)=13+2×121=2 

So, we have LHL=RHL=f(x) at x=1.

Hence f(x) is continuous at x=1


Find which of the functions in Exercises 2 to 10 is continuous or discontinuous at the indicated points:

2. f(x)={3x+5,if x2x2,if x<2 at x=2

Ans: Given that, f(x)={3x+5,if x2x2,if x<2 at x=2

LHL=f(x) =limx2x2 

=22 

LHL=4 

RHL=f(x) =limx2+(3x+5) 

=3×2+5 

RHL=11 

f(2)=3×2+5=11 

Here LHLRHL=f(x) at x=2 

Hence f(x) is discontinuous at x=2


3. f(x)={1cos 2xx2, if x05,if x=0 at x=0

Ans: Given that, f(x)={1cos 2xx2, if x05,if x=0 at x=0

LHL=f(x)  

=limx01cos 2xx2 

=limx02x x2 

=2×(1)2 

LHL=2 

RHL=f(x)  

=limx0+1cos 2xx2 

=limx0+2x x2 

=2×(1)2 

RHL=2 

f(0)=5 

Here LHL=RHLf(x) at x=0 

Hence f(x) is discontinuous at x=0.


4. f(x)={2x23x2x2, if x25,if x=2 at x=2

Ans: Given that, f(x)={2x23x2x2, if x25,if x=2 at x=2

LHL=f(x)  

=limx22x23x2x2 

=limx2(2x+1)(x2)x2 

=limx2(2x+1)

=2×2+1 

LHL  = 5 

RHL =f(x)  

=limx22x23x2x2 

=limx2(2x+1)(x2)x2 

=limx2(2x+1)

=2×2+1 

RHL=5

f(2)=5 

 Here LHL=RHL=f(x) at x=2 

 Hence f(x) is continuous at x=2.


5. f(x)={|x4|2(x4), if x40,if x=4 at x=4

Ans: Given that, f(x)={|x4|2(x4), if x40,if x=4 at x=4.

We know that |x4|={(x4),if x<4(x4),if x>4

LHL=f(x)  

=limx4|x4|2(x4) 

=limx4(x4)2(x4) 

LHL=12 

RHL=f(x)  

=limx4+|x4|2(x4) 

=limx4+(x4)2(x4) 

RHL=12 

f(4)=0 

Here LHLRHLf(x) at x=4 

Hence f(x) is discontinuous at x=4.


6. f(x)={|x|cos (1x),if x00,if x=0 at x=0

Ans: Given that f(x)={|x|cos (1x),if x00,if x=0 at x=0

LHL=f(x)  

=limx0|x|cos (1x)  

=limx0(x)cos (1x)  

=0×(number which will vary from1 to 1) 

LHL=0 

RHL=f(x)  

=limx0+|x|cos (1x)  

=limx0+(x)cos (1x)  

=0×(number which will vary from1 to 1) 

RHL=0 

f(0)=0 

Here LHL=RHL=f(x) at x=0 

Hence f(x) is continuous at x=0.


7. f(x)={|xa|sin (1xa), if x00, if x=a at x=a

Ans: Given that f(x)={|xa|sin (1xa), if x00, if x=a at x=a

 LHL=f(x)  

=limxa|xa|sin (1xa) 

A. |xa|={(xa), if x<axa, if xa

=limxa((xa))sin (1xa) 

=0×(number which will vary from1 to 1) 

LHL=0 

RHL=f(x)  

=limxa+|xa|sin (1xa) 

B. |xa|={(xa), if x<axa, if xa

=limxa+((xa))sin (1xa)  

=0×(number which will vary from1 to 1) 

RHL=0 

f(a)=0 

Here LHL=RHL=f(x) at x=a 

Hence f(x) is continuous at x=a.


8. f(x)={e1x1+e1x, if x00, if x=0 at x=0

Ans: Given f(x)={e1x1+e1x, if x00, if x=0 at x=0.

LHL=f(x)  

=limx0e1x1+e1x

x0x<0

1x 

e1x0 

=limx0(01+0) 

LHL=0 

RHL=f(x) =limx0+e1x1+e1x

x0+x>0

1x 

e1x 

=limx0+11+1e1x 

=(11+0) 

RHL=1 

f(0)=0 

Here LHLRHL at x=0 

Hence f(x) is discontinuous at x=0.


9. f(x)={x22, if 0x12x23x+32, if 1<x2 at x=1.

Ans: f(x)={x22, if 0x12x23x+32, if 1<x2 at x=1

LHL=f(x)  

 =limx1x22 

 =limx1(12) 

 LHL=12

 RHL=f(x)  

 =limx1+(2x23x+32) 

 =limx1+(2×123×1+32)

 =(321)

 RHL=12 

 f(1)=12 

 Here LHL=RHL=f(1) at x=1 

 Hence f(x) is continuous at x=1.


10. f(x)=|x|+|x1| at x=1.

Ans: Given f(x)=|x|+|x1| at x=1 

 LHL=f(x)  

 =limx1|x|+|x1|

As x < 1

|x|=x,  |x1|=(x1) 

 =limx1(xx+1) 

 LHL=1

 RHL=f(x)  

 =limx1+|x|+|x1|

As x > 1

|x|=x,  |x1|=(x1) 

 =limx1+(2x1)

 =(21)

 RHL=1

 f(1)=1 

 Here LHL=RHL=f(1) at x=1 

 Hence f(x) is continuous at x=1.


Find the value of k in each of the Exercises 11 to 14 so that the function f is continuous at the indicated point: 

11. f(x)={3x8, if x52k,if x>5 at x=5

Ans: Given f(x)={3x8, if x52k,if x>5 at x=5 

f(x) will be continuous at x=5 if 

LHL=RHL=f(5) 

LHL=f(x)  

 =limx5(3x8) 

 =limx5(158) 

LHL=7

RHL=f(x)  

=limx5+(2k) 

RHL=2k 

2k=7k=72 


12. f(x)={2x+2164x16,if x2k,if x=2 at x=2

Ans: Given f(x)={2x+2164x16,if x2k,if x=2 at x=2

 f(x) will be continuous at x=2 if 

LHL=RHL=f(2) 

LHL=f(x)  

 =limx2 2x+2164x16

=limx2 4(2x4)(2x4)(2x+4) 

 =limx2(422+4) 

 LHL=12

RHL=f(x)  

 =limx2+ 2x+2164x16

=limx2+ 4(2x4)(2x4)(2x+4) 

 =limx2+(422+4) 

 RHL=12

k=12 


13. f(x)={1+kx1kxx,if 1x<02x+1x1, if 0x1 at x=0

Ans: Given f(x)={1+kx1kxx,if 1x<02x+1x1, if 0x1 at x=0 

f(x) will be continuous at x=0 if 

LHL=RHL=f(0) 

LHL=f(x)  

=limx0(1+kx1kxx) 

=limx0(1+kx1kxx)(1+kx+1kx1+kx+1kx) 

=limx0 (1+kx)(1kx)x(1+kx+1kx) 

=limx0 2kxx(1+kx+1kx) 

C. =limx0 2k(1+0+10)

 LHL=k

 RHL=f(x)  

 =limx0+(2x+1x1) 

RHL=1 

k=1 


14. f(x)={1cos kxx sin x,if x012,if x=0 at x=0

Ans: Given f(x)={1cos kxx sin x,if x012,if x=0 at x=0.

 f(x) will be continuous at x=0 if 

LHL=RHL=f(0) 

LHL=RHL=f(x)  

 =limx0(1cos kxx sin x) 

 =limx0(1cos kxk2x2(sin xx))k2 

=limx0(12)k2 

 LHL=RHL=k22

 f(0)=12 

k22=12k2=1 

k=±1


15. Prove that the function f defined by f(x)={x|x|+2x2,if x0k,if x=0 remains discontinuous at x=0, regardless of the choice of k. 

Ans: Given that, f(x)={x|x|+2x2,if x0k,if x=0. here to check continuity at x=0

 LHL=limx0 f(x)

 =x|x|+2x2  

|x|={x, x<0x, x0 

 =limx0 xx+2x2 

=limx0 11+2x 

LHL=1 

 RHL=limx0+ f(x)

 =x|x|+2x2  

|x|={x, x<0x, x0 

 =limx0+ xx+2x2

=limx0+ 11+2x 

RHL=1 

re LHLRHL 

Hence limit doesn’t exist, the discontinuity is irremovable so there is no point of value of function at x=0 for continuity. Proved. 


16. Find the values of a and b such that the function f defined by 

f(x)={x4|x4|+a,if x<4a+b,if x=4x4|x4|+b,if x>4 is a continuous function at x=4

Ans: Given that f(x)={x4|x4|+a,if x<4a+b,if x=4x4|x4|+b,if x>4

We must find a and b such that the function is continuous at x=4.

LHL=limx4 f(x) 

 =x4|x4|+a  

|x4|={(x4),x<4(x4), x4 

=limx4 x4(x4)+a 

=limx4 (1+a) 

LHL=a1 

RHL=limx4 f(x)=x4|x4|+b  

|x4|={(x4),x<4(x4), x4

=limx4+ x4(x4)+b 

=limx4+ (1+b) 

RHL=b+1 

f(4)=a+b 

LHL=RHL=f(4) 

a1=b+1=a+b 

a=1, b=1


17. Given the function f(x)=1x+2. Find the points of discontinuity of the composite function y=f(f(x))

Ans: Given that f(x)=1x+2

 Now, f(f(x))=f(1x+2)=11x+2+2=x+21+2x+4=x+22x+5 

 Here y=x+22x+5 so, for y to be defined 2x+50 

 2x5x52 

 Hence f(f(x)) is discontinuous at x=52


18. Find all points of discontinuity of the function f(t)=1t2+t2, where t=1x1

Ans: Given, f(t)=1t2+t2 and t=1x1 

 f(x)=1(1x1)2+(1x1)2 

=(x1)21+(x1)2(x1)2 

=(x1)22(x22x+1)+x1+1 

=(x1)22x2+5x2 

For f(x) to be defined 2x2+5x20 

(2x24xx+2)0 

2x(x2)(x2)0 

(2x1)(x2)0 

x12 and 2 

Hence points of discontinuity for the function f(x) are 

x=12 and x=2


19. Show that the function f(x)=|sin x +cos x | is continuous at x=π

Ans: Given f(x)=|sin x +cos x | to check continuity at x=π

 f(x) =|sin x +cos x |  

=|sin π +cos π |  

=|01| 

f(x) =1 

f(π)=|sin π +cos π |=|01|=1 

So, f(x) is continuous at x=π

Hence proved. 


Examine the differentiability of function f, where f is defined by

20. f(x)={x[x],if 0x<2(x1),if 2x<3 at x=2

Ans: Given f(x)={x[x],if 0x<2(x1),if 2x<3 at x=2

LHD=f(2) 

=f(2h)f(2)h  

=(2h)[2h]2(21)h  

=(2h)12h  

 =hh  

LHD=1 

RHD=f(2+) 

=f(2+h)f(2)h  

=(2+h1)(2+h)2(21)h  

=h2+3h+22h  

 =h2+3hh  

RHD=3 

Here LHDRHD 

Hence function f is not differentiable at x=2.


21. f(x)={x2.sin1x,if x00,if x=0

Ans: Given f(x)={x2.sin1x,if x00,if x=0

 LHD=f(0) 

=f(0h)f(0)h  

=(0h)2sin (10h) 0h  

=h2sin (1h) h  

 =hsin (1h)  ; 0×(numbers vary between1 to 1) 

LHD=0 

RHD=f(0+) 

=f(0+h)f(0)h  

=(0+h)2sin (10+h) 0h  

=h2sin (1h) h  

 =hsin (1h)  ; 0×(numbers vary between1 to 1)

RHD=0 Here LHD=RHD 

Hence function f is differentiable at x=0.


22. f(x)={1+x, if x25x, if x>2 at x=2

Ans: Given f(x)={1+x, if x25x, if x>2 at x=2

 LHD=f(2) 

=f(2h)f(2)h  

=(1+2h)3h  

=hh  

 =1  

LHD=1 

RHD=f(2+) 

=f(2+h)f(2)h  

=(52h)3h  

=hh  

=1  

RHD=1 

Here LHDRHD 

Hence function f is not differentiable at x=2.


23. Show that f(x)=|x5| is continuous but not differentiable at x=5.

Ans: Given that f(x)=|x5| 

 Here, f(x)=|x5|={(x5), x<5x5, x5 

 Continuity at x=5 

 LHL=f(x)  

 =limx5(5x) 

 =0 

 RHL=f(x)  

 =limx5+(x5) 

 =0

 f(5)=0 

Here LHL=RHL=f(5) 

Hence f is continuous at x=5

Differentiability at x=5 

 LHD=f(5) 

=limh0(1h)(f(5h)f(5)) 

=limh0(1h){|5h5|0} 

=limh0(1h)h 

LHD=1 

RHD=f(5+) 

=limh0(1h)(f(5+h)f(5)) 

=limh0(1h){|5+h5|0} 

=limh0(1h)h 

RHD=1 

Here, LHDRHD 

Hence f is not differentiable at x=5


24. A function f:RR satisfies the equation f(x+y)=f(x).f(y) for all x, yR, f(x)0. Suppose that the function is differentiable at x=0 and f(0)=2, then prove that f(x)=2f(x)

Ans: Given f:RR satisfies the equation f(x+y)=f(x).f(y).

 for all x, yR, f(x)0

f(x)=1h{f(x+h)f(x)}  

 =1h{f(x).f(h)f(x)}  [f(x+y)=f(x).f(y)] 

=f(x) 1h{f(h)1}  

By putting x=0=y, f(x+y)=f(x).f(y) 

 f(0)=f(0).f(0)f(0)=0 or 1 but f(x)0 

So, f(0)=1

f(x)=f(x) 1h{f(h)f(0)}  

=f(x).f(0) 

 f(x)=2f(x) 

 Hence proved.


Differentiate each of the following w.r.to x (Exercise 25 to 43)

25. 2cos2x 

Ans: Given y=2cos2x 

By taking log to the base e.

 ln y =ln 2cos2x =cos2x ln 2  

By differentiating w.r.to x we have

ddxln y =ln 2 ddxcos2x 

1y dydx=(ln 2 ).(2cos x)(sin x ) 

dydx=y.sin 2x .ln 2  

dydx=2cos2x .sin 2x .ln 2  


26. 8xx8 

Ans: Given y=8xx8 

By taking log to base e. 

ln y =ln 8xx8 =lnln 8x lnln x8  

ln y =x ln 8 8lnln x  

ddxln y =ddx(x ln 8 8 ln x ) 

ddyln y dydx=(ln 8 8x) 

dydx=y(ln 8 8x) 

dydx=8xx8(ln 8 8x)


27. log (x+x2+a)  

Ans: Given that y=log (x+x2+a)  

 dydx=ddx(log (x+x2+a) ) 

=dd(x+x2+a)log (x+x2+a) ddx(x+x2+a) 

=1(x+x2+a){1+dd(x2+a)x2+a d(x2+a)dx} 

=1(x+x2+a){1+12x2+a 2x} 

=1(x+x2+a){x+x2+ax2+a } 

dydx=1x2+a 


28. log [log (log x5 ) ]  

Ans: Given y=log [log (log x5 ) ]  

 dydx=ddxlog [log (log x5 ) ]  

=ddlog (log x5 ) log [log (log x5 ) ] 

  ddlog x5 log (log x5 )  5ddxlog x 

=1log (log x5 ) ×1log x5 ×5x 

dydx=1x.log x5.log (log x5 )  


29. sin x +cos2x  

Ans: Given y=sin x +cos2x  

dydx=ddx(sin x +cos2x ) 

=ddxsin x  dxdx+ddxx  dxdx 

=cos x 12xsin 2x 12x 

=12x(cos x sin 2x  ) 


30. sinn(ax2+bx+c)  

Ans: Given y=sinn(ax2+bx+c)  

 dydx=ddxsinn(ax2+bx+c)  

=dsinn(ax2+bx+c) dsin (ax2+bx+c) ×dsin (ax2+bx+c) d(ax2+bx+c)×d(ax2+bx+c)dx 

=nsinn1(ax2+bx+c) .cos(ax2+bx+c).(2ax+b) 

dydx=n(2ax+b).sinn1(ax2+bx+c) .cos (ax2+bx+c)  


31. cos (tan x+1 )  

Ans: Given y=cos (tan x+1 )  

 dydx=ddxcos (tan x+1 )  

 =dcos (tan x+1 ) d(tan x+1 )×d(tan x+1 )dx+1×dx+1dx 

 =sin (tan x+1 ) .x+1.12x+1 

dydx=12x+1.sin (tan x+1 ) .x+1  


32. sin x2 +sin2x +sin2(x2)  

Ans: Given y=sin x2 +sin2x +sin2(x2)  

 dydx=ddx(sin x2 +x +x2 ) 

=dsin x2 dx2×dx2dx+ddx(sin2x)+ddxsin2(x2) 

 dydx=2xcos x2 +sin 2x +2xsin(2x2)  


33. sin1(1x+1)  

Ans: Given y=sin1(1x+1)  

dydx=ddx{sin1(1x+1) }

=d sin1(1x+1) d(1x+1)×d(1x+1)dx+1×dx+1dx 

=11(1x+1)2×{1(x+1)2}×12x+1 

=x+1x+11×1(x+1)2×12x+1 

dydx=12x(x+1) 


34. (sin x )cos x  

Ans: Given y=(sin x )cos x  

Taking log

log y =log ((sin x )cos x ) =cos x log sin x  

ddxlog y =ddxcos x log sin x   

ddylog y .dydx=cos x dlog sin x  dsin x ×dsin x dx+log sin x .dcos x dx 

1ydydx=cos x.1sin x .cos x sin x log sin x   

dydx=(sin x )cos x (cos x .cot x sin x log sin x  ) 


35. sinmx cosnx  

Ans: Given y=sinmx cosnx  

 dydx=ddx(sinmx cosnx ) 

=cosnx ddxsinmx+sinmx ddxcosnx  

 =cosnx m sinm1x cos x+sinmxn  (cosn1x ) sin x

=m cosn+1xsinm1xnsinm+1x(cosn1x )  


36. (x+1)2(x+2)3(x+3)4 

Ans: Given y=(x+1)2(x+2)3(x+3)4

dydx=ddx{(x+1)2(x+2)3(x+3)4} =(x+2)3(x+3)4ddx(x+1)2+(x+1)2(x+3)4 ddx(x+2)3+(x+1)2(x+2)3ddx(x+3)4 

=(x+2)3(x+3)42(x+1)+(x+1)2(x+3)43(x+2)2+(x+1)2(x+2)34(x+3)3 

=(x+1)(x+2)2(x+3)3{2(x+2)(x+3)+3(x+1)(x+3)+4(x+1)(x+2)} 

=(x+1)(x+2)2(x+3)3{(2+3+4)x2+(10+12+12)x+12+9+8} 

=(x+1)(x+2)2(x+3)3(9x2+34x+29) 


37. cos1(sin x +cos x 2) ,π4<x<π4 

Ans: Given y=cos1(sin x +cos x 2) ,π4<x<π4 

 =cos1(sin π4 sin x +cos π4 cos x )  

=cos1(cos (π4x) )  

 y=π4x

 dydx=1 


38. tan1(1cos x 1+cos x ) ,π4<x<π4 

Ans: Given y=tan1(1cos x 1+cos x ) ,π4<x<π4 

 =tan1(2sin2x2 2cos2x2 )  

 =tan1(tan2x2 )  

=tan1|tan x2 |  

y=x2 

dydx=12 


39. tan1(sec x +tan x ) ,π2<x<π2 

Ans: Given y=tan1(sec x +tan x ) ,π2<x<π2 

 =tan1[(1+sin x )cos x ] 

=tan1[1cos (π2+x) sin (π2+x)  ] 

=tan1[2sin2(π4+x2) 2sin (π4+x2) cos (π4+x2)  ] 

 =tan1[(tan (π4+x2) ) ] 

 y=π4+x2 

dydx=12 


40. tan1(acos x bsin x bcos x +asin x ) ,π2<x<π2 and abtan x >1 

Ans: Given y=tan1(acos x bsin x bcos x +asin x ) ,π2<x<π2 and abtan x >1 

=tan1(acos x bcos x bsin x bcos x bcos x bcos x +asin x bcos x )  

=tan1(abtan x 1+abtan x )  

=tan1[tan(ab) x] 

=(ab) x

dydx=


41. sec1(14x33x), 0<x<12  

Ans: Given y=sec1(14x33x), 0<x<12  

 Let, x=cos t  

 y=sec1(14cos3 t 3cos t )  

 =sec1(1cos 3t )  

=sec1(sec 3t )  

=3t 

y=3 cos1 x 

dydx=3×11x2=31x2 


42. tan1(3a2xx3a33ax2) ,13<xa<13 

Ans: Given y=tan1(3a2xx3a33ax2) ,13<xa<13 

y=tan1(3xa(xa)313(xa)2)  

Let, xa=tan t  

y=tan1(tan 3t )     [tan 3t =3tan t tan3t 13tan2t ] 

y=3t=3tan1xa  

dydx=31a(1+(xa)2) 

dydx=3aa2+x2 


43. tan1(1+x2+1x21+x21x2) , 1<x<1, x0 

Ans:Given y=tan1(1+x2+1x21+x21x2) , 1<x<1, x0 

 Let, x2=cos 2t  

y=tan1(1+cos 2t +1cos 2t 1+cos 2t 1cos 2t )  

=tan1(2cos t +2sin t 2cos t 2sin t )  

=tan1(1+tan t 1tan t )  

=tan1[tan(π4+t)] =π4+t 

=π4+12cos1x2 

dydx=12×2x1x4 

dydx=x1x4 


Find dydx of each of the functions expressed in parametric form in Exercises from 44 to 48.

44. x=t+1t, y=t1t 

Ans: Given x=t+1t, y=t1t 

dxdt=ddt(t+1t), dydt=ddt(t1t) 

dxdt=11t2, dydt=1+1t2 

dydx=dy/dtdx/dt 

=1+1t211t2 

=t2+1t21 

x+y=2tt=x+y2 

dydx=(x+y)2+4(x+y)24 


45. x=eθ(θ+1θ), y=eθ(θ1θ) 

Ans: Given x=eθ(θ+1θ), y=eθ(θ1θ) 

 dxdθ=ddθ{eθ(θ+1θ)}, dydθ=ddθ{eθ(θ1θ)} 

dxdθ=eθ(θ+1θ)+eθ(11θ2), dydθ=eθ(θ1θ)+eθ(1+1θ2) 

dydx=dy/dθdx/dθ 

 =eθ(θ1θ)+eθ(1+1θ2)eθ(θ+1θ)+eθ(11θ2) 

=e2θ((θ21)θ+(θ2+1)θ2(θ2+1)θ+(θ21)θ2) 

dydx=e2θ(θ3+θ2+θ+1θ3+θ2+θ1) 


46. x=3 cos θ 2 cos3θ , y=3sin θ 2sin3θ  

Ans: Given x=3cos θ 2θ , y=3sin θ 2θ  

ddθx=ddθ(3cos θ 2θ ), ddθy=ddθ(3sin θ 2θ ) 

dxdθ=3sin θ 6 cos2θ  (sin θ ),dydθ=3cos θ 6 sin2θ cos θ  

dydx=dy/dθdx/dθ 

dydx=3cos θ 6 sin2θ cos θ 3sin θ +6sin θcos2θ =3cos θ 3sin θ ×12θ 2θ 1 

dydx=cot θ  


47. sin x =2t1+t2 ,tan y =2t1t2 

Ans: Given sin x =2t1+t2 ,tan y =2t1t2 

 Let t=tan θ  

 sin x =2tan θ  1+θ   ,tan y =2tan θ  1θ  

 sin x =sin 2θ  ,tan y =tan 2θ  

 x=2θ,  y=2θ 

 y=x 

 dydx=1 


48. x=1+log t t2 , y=3+2log t t

Ans: Given that x=1+log t t2 , y=3+2log t t 

dxdt=ddt(1+log t t2) ,dydt=ddt(3+2log t t) 

dxdt=t2(1t)(1+log t )2tt4 , dydt=t(2t)(3+2log t )t2 

dxdt=1+2log t t3 , dydt=1+2log t t2 

dydx=dy/dtdx/dt 

dydx=(1+2log t t2)×(t31+2log t ) 

dydx=t 


49. If x=ecos 2t  and y=esin 2t, then prove that dydx=y log xx log y

Ans: Given that x=ecos 2t cos 2t =log x  

 y=esin 2t sin 2t =log y  

 Squaring and adding we have

 2t +2t =(log x )2+(log y )2 

 (log x )2+(log y )2=1 

 By differentiating w.r.to x we have

 ddx(log x )2+ddx(log y )2=ddx1

 2log x x+2log y ydydx=0 

 dydx=ylog x xlog y  


50. If x=asin 2t  (1+cos 2t ) and y=bcos 2t (1cos 2t ), show that (dydx)at t=π4=ba

Ans: Given x=asin 2t  (1+cos 2t ) and y=bcos 2t (1cos 2t ) 

x=a(sin 2t +sin 2t cos 2t ), y=b(cos 2t 2t ) 

x=a(sin 2t +12sin 4t ), y=b(cos 2t 1212cos 4t ) 

dxdt=a(2cos 2t +2cos 4t ),dydt=b(2sin 2t +2sin 4t ) 

dydx=b(2sin 2t +2sin 4t )a(2cos 2t +2cos 4t ) 

At t=π4 

(dydx)at t=π4=b(sin π2  +sin π )a(cos π2 +cos π ) 

(dydx)at t=π4=b(1)a(1)=ba 

 Hence proved. 


51. If x=3sin t sin 3t , y=3cos t cos 3t , find dydx at t=π3

Ans: Given x=3sin t sin 3t , y=3cos t cos 3t  

 x=4t , y=3cos t cos 3t  

 dxdt=12t cos t , dydt=3sin t +3sin 3t  

 dydx=3sin t +3sin 3t 12t cos t  

at t=π3 

(dydx)at t=π3=sin π3 +sin π 4π3 cos π3 =324×(32)2×12 

(dydx)at t=π3=13 


52. Differentiate xsin x  w.r.to sin x 

Ans: Given functions are f(x)=xsin x  , g(x)=sin x  

Differentiation of f w.r.to g 

df(x)dg(x)=df(x)/dxdg(x)/dx 

df(x)dx=ddx(xsin x )=sin x xcos x sin2x  

dg(x)dx=ddxsin x =cos x  

df(x)dg(x)=(sin x xcos x sin2x )(1cos x ) 

df(x)dg(x)=tan x xsin2x  


53. Differentiate tan1(1+x21x)  w.r.to tan1x  when x0

Ans: Given functions are f(x)=tan1(1+x21x)  , g(x)=tan1x  

 Differentiation of f w.r.to g 

 df(x)dg(x)=df(x)/dxdg(x)/dx 

 df(x)dx=ddxtan1(1+x21x) , dg(x)dx=ddxtan1x 

 For f , let x=tan t  

 (1+tan2t 1tan t ) =((sec t 1)cos t sin t )  

 =(1cos t sin t )  

 =(tan t2 )  

 =t2=12tan1x  

 df(x)dx=ddx(1+x21x)  

 =ddx(12tan1x ) 

=12(1+x2) 

 dg(x)dx=ddxtan1x =11+x2 

df(x)dg(x)=df(x)/dxdg(x)/dx=12(1+x2)11+x2 =12 


Find dydx when x and y are connected by the relation given in each of the exercise 54 to 57.

54. sin (xy) +xy=x2y 

Ans: 

 Given sin (xy) +xy=x2y 

 Differentiating w.r.to x we have

ddxsin (xy) +ddx(xy)=ddxx2dydx 

cos (xy) {y+xdydx}+yxdydxy2=2xdydx 

y3cos (xy) +cos (xy) y2xdydx+yxdydx=2xy2y2dydx 

(cos (xy) y2xx+y2)dydx=2xy2yy3cos (xy)  

dydx=2xy2yy3cos (xy) cos (xy) y2xx+y2 


55. sec (x+y) =xy 

Ans: Given sec (x+y) =xy 

ddxsec (x+y) =ddx(xy) 

sec (x+y) tan (x+y) {1+dydx}=y+xdydx 

sec (x+y) tan (x+y) +sec (x+y) tan (x+y) dydx=y+xdydx 

sec (x+y) tan (x+y) dydxxdydx  =ysec (x+y) tan (x+y)  

dydx=ysec (x+y) tan (x+y) sec (x+y) tan (x+y) x 


56. tan1(x2+y2) =a

Ans: Given tan1(x2+y2) =a 

 x2+y2=tan a  

 Differentiating w.r.to x we get

 2x+2ydydx=0 

 dydx=xy 


57. (x2+y2)2=xy

Ans: Given (x2+y2)2=xy 

 x4+y4+2x2y2xy=0 

 Differentiating w.r.to x we have

 4x3+4y3dydx+4xy2+4x2ydydxyxdydx=0 

 (4y3+4x2yx)dydx=y4xy24x3 

 dydx=4y3+4x2yx4y3+4x2yx 


58. If ax2+2hxy+by2+2gx+2fy+c=0, then show that dydxdxdy=1

Ans: Given ax2+2hxy+by2+2gx+2fy+c=0 

 Differentiating w.r.to x we have

 2ax+2h(y+xdydx)+2bydydx+2g+2fdydx=0 

 (hx+by+f)dydx=(ax+hy+g) 

 dydx=ax+hy+ghx+by+f 

 Now differentiating w.r.to y we have

 2axdxdy+2h(x+ydxdy)+2by+2gdxdy+2f=0 

 (ax+hy+g)dxdy=(2hx+by+f) 

 dxdy=hx+by+fax+hy+g 

 Now, dydxdxdy=1

 Hence proved. 


59. If x=exy, prove that dydx=xyxlog x  

Ans: Given that x=exy 

 Taking log, we have

 log x =xy 

 y log x =x 

 Differentiating w.r.to x we have

 yx+log x dydx=1 

 log x dydx=1yx=xyx 

 dydx=xyxlog x  

 Hence proved. 


60. If yx=eyx, prove that dydx=(1+log y )2log y 

Ans: Given yx=eyx

 Taking log, we have

 xlog y =yx 

 Differentiating w.r.to x we have

 log y +xydydx=dydx1 

 1+log y =(1xy)dydx 

 dydx=y(1+log y )yx 

 Now xlog y =yx 

 log y =yx1 

 1+log y =yx 

 1xy=111+log y  =1+log y 11+log y =log y 1+log y  

 dydx=(1+log y )1xy=(1+log y )log y 1+log y   

dydx=(1+log y )2log y  

 Hence proved.


61. If y=(cos x )(cos x )x ), show that dydx=y2tan x ylog cos x  1

Ans: Given y=(cos x )(cos x )x ) 

 y=(cos x )y 

 log y =ylog cos x   

 ddxlog y =ddx(ylog cos x  ) 

 1ydydx=log cos x  dydx+y1cos x (sin x ) 

 dydx=ylog cos x  dydxy2tan x  

 y2tan x =(ylog cos x  1)dydx 

 dydx=y2tan x ylog cos x  1 

 Hence proved. 

 

62. If xsin (a+y) +sin a cos (a+y) =0, prove that dydx=sin2(a+y) sin a 

Ans: Given xsin (a+y) +sin a cos (a+y) =0

ddx(xsin (a+y) +sin a cos (a+y) )=0

sin (a+y) +xcos (a+y) dydxsin a sin (a+y) dydx=0 

dydx=sin (a+y) sin a sin (a+y) xcos (a+y)  

x=sin a cos (a+y) sin (a+y)  

dydx=sin (a+y) sin a sin (a+y) (sin a cos (a+y) sin (a+y)  )cos (a+y)  

 =sin2(a+y) sin a {sin2(a+y) +cos2(a+y) } 

 dydx=sin2(a+y) sin a  

 Hence proved. 


63. If 1x2+1y2=a(xy), prove that dydx=1y21x2

Ans: Given 1x2+1y2=a(xy) 

 Let x=sin p , y=sin q  

 1x2=1p =p  

 1y2=1q =q  

 cos p +cos q =a(sin p sin q ) 

 2cos p+q2  cos pq2 =a(2cos p+q2  sin pq2 ) 

 cot pq2 =a 

 pq=2a  

 x y =2a  

 ddx(x y )=2ddxa  

11x211y2dydx=0 

 dydx=1y21x2 

 Hence prove. 


64. If y=tan1x , find d2ydx2 in terms of y alone. 

Ans: Given y=tan1x  

 x=tan y  

 Differentiating w.r.to x 

 1=sec2y dydx 

 dydx=cos2y  

 Again, ddxdydx=ddxcos2y  

d2ydx2=sin 2y dydx=sin 2y cos2y 

 

Verify Rolle's theorem for each of the functions in Exercise 65 to 69. 

65. f(x)=x(x1)2 in [0, 1]

Ans: Given f(x)=x(x1)2 

 Function f is polynomial, so 

i. it is continuous and 

ii. differentiable for all real x. 

iii. f(0)=0 and f(1)=0 

 All three conditions for Rolle’s theorem are verified, so 

 c[0, 1] such that f(c)=0

 f(x)=(x1)2+2x(x1) 

 =3x24x+1 

 3c24c+1=0 

 3c23cc+1=0 

 3c(c1)(c1)=0 

 (3c1)(c1)=0 

 c=1,13 

 13[0, 1] 

 Hence Rolle’s theorem is verified.


66. f(x)=sin4x +cos4x  in [0,π2]

Ans: Given f(x)=sin4x +cos4x   

 Function f is sine and cosine function, so 

i. it is continuous and 

ii. differentiable for all real x. 

iii. f(0)=1 and f(π2)=1 

 All three conditions for Rolle’s theorem are verified, so 

 c[0,π2] such that f(c)=0

 f(x)=ddx(sin4x +cos4x  ) 

 =4sin3x cos x 4cos3x sin x  

 =4sin x cos x (sin2x cos2x ) 

 =2sin 2x cos 2x  

 2sin 2c cos 2c =0 

 sin 2c =02c=0, π 

 c=0,π2 

 cos 2c =02c=π2 

 c=π4[0,  π2] 

 Hence Rolle’s theorem is verified.


67. f(x)=log (x2+2) log 3  in [1, 1] 

Ans: 

 Given f(x)=log (x2+2) log 3  

 Function f is logarithmic function and x2+2>0 xR, so 

i. it is continuous and 

ii. differentiable for all real x. 

iii. f(1)=0 and f(1)=0 

 All three conditions for Rolle’s theorem are verified, so 

 c[1, 1] such that f(c)=0

 f(x)=ddx(log (x2+2) log 3 ) 

 =2xx2+2 

 2cc2+1=0c=0[1, 1] 

 Hence Rolle’s theorem is verified.


68. f(x)=x(x+3)ex2 in [3, 0]

Ans: Given f(x)=x(x+3)ex2 

 Function f is polynomial with exponential function, so 

i. it is continuous and 

ii. differentiable for all real x. 

iii. f(3)=0 and f(0)=0 

 All three conditions for Rolle’s theorem are verified, so 

 c[3, 0] such that f(c)=0

 f(x)=ddx(x(x+3)ex2) 

 =(x+3)ex2+xex212x(x+3)ex2 

 =12(x2+7x+6)ex2 

 f(c)=12(c2+7c+6)ec2=0 

 ⇒∴c2+c+6c+6=0 

 c(c+1)+6(c+1)=0 

 (c+1)(c+6)=0 

 c=6, 1 

 c=1[3, 0] 

 Hence Rolle’s theorem is verified.


69. f(x)=4x2 in [2, 2] 

Ans: Given f(x)=4x2 

 Function f is defined x[2, 2], so 

i. it is continuous in [2, 2] and 

ii. differentiable in(2, 2)

iii. f(2)=0 and f(2)=0 

 All three conditions for Rolle’s theorem are verified, so 

 c[2, 2] such that f(c)=0

 f(x)=ddx4x2 

 =x4x2 

 f(c)=c4c2=0 

 c=0(2, 2) 

 Hence Rolle’s theorem is verified.


70. Discuss the applicability of Rolle’s theorem on the function given by 

f(x)={x2+1,if 0x13x,if 1x2

Ans: Given f(x)={x2+1,if 0x13x,if 1x2

 At x=1 

 LHL=f(x)  

 =limx1(x2+1) 

 =1+1=2 

 RHL=limx1+ f(x) 

 =limx1+(3x) 

 =31=2

 LHL=RHL=f(1) 

 So, function is continuous.

 LHD=f(1)=(2x)at x=1=2 

 RHD=f(1+)=(x)at x=1=1 

 LHDRHD. So, function is not differentiable.

 Hence Rolle’s theorem is not applicable in [0, 2]


71. Find the points on the curve y=cos x 1 in [0, 2π], where the tangents are parallel to the x-axis.

Ans: Given y=cos x 1

Tangent is parallel to the x-axis then the derivative must be zero at those points. So,dydx=ddx(cos x 1)=sin x =0

 x=nπ; nZ 

 But in(0, 2π), x=π 

 Point is y=cos π 1=2 

 (π, 2).

 Hence the point is (π, 2)


72. Using Rolle’s theorem, find the point on the curve y=x(x4), x[0,  4]. Where the tangent is parallel to the x-axis.

Ans: Given y=x(x4), x[0,  4]

 Function f is polynomial, so 

i. it is continuous and 

ii. differentiable for all real x. 

iii. f(0)=0 and f(4)=0 

 All three conditions for Rolle’s theorem are verified, so 

 c[0, 4] such that f(c)=0

 f(x)=ddx(x24x) 

 =2x4 

 f(c)=2x4=0 

 c=2(0, 4) 

 At x=2 function has a tangent parallel to the x-axis.

 Again, y=2(24)=4 

 Hence the point is (2, 4)


Verify mean value theorem for each of the functions given Exercises 73 to 76.

73. f(x)=14x1, x[1, 4] 

Ans: Given f(x)=14x1, x[1, 4] 

For mean value theorem function must be continuous and differentiable in the given domain.

Here, the function f is discontinuous at x=14

Again f(x)=4(4x1)2, so f is not differentiable at x=14

Both conditions are satisfied for the mean value theorem.

So, there exists a real number c(1, 4) such that

f(c)=f(4)f(1)41 

 4(4c1)2=13(14×4114×11) 

 4(4c1)2=13(11513) 

 (24c1)2=13(5115)=445 

 24c1=±235 

 4c1=±35 

 c=14(1±35 ) 

 c=14(1+35 )(1, 4) 

 Hence the mean value theorem is verified. 


74. f(x)=x32x2x+3, x[0, 1]

Ans: Given f(x)=x32x2x+3, x[0, 1] 

Since, f(x) is polynomial and the polynomial function is continuous and differentiable for all real x. 

So there exists a real number c(0, 1) such that

f(c)=f(1)f(0)10 

f(x)=3x24x1 

3c24c1=(121+3)(3) 

3c24c1=2 

3c23cc+1=0 

3c(c1)(c1)=0 

(3c1)(c1)=0 

c=1,13 

c=13(0,1) 

 Hence the mean value theorem is verified. 


75. f(x)=sin x sin 2x , x[0, π] 

Ans: Given that f(x)=sin x sin 2x , x[0, π] 

Since sin function is continuous and differentiable for all real x, so there exists a real number c(0, π) such that

f(c)=f(π)f(0)π0 

f(x)=cos x 2cos 2x  

cos c 2cos 2c =1π(00)=0 

cos c 2(2c 1)=0 

 4c cos c 2=0 

 cos c =1±1+4×4×28=1±338 

 c=(1±338) (0, π) 

Hence the mean value theorem is verified.


76. f(x)=25x2, x[1, 5]

Ans: Given f(x)=25x2, x[1, 5] 

 f(x) is continuous when 25x20 

 So, x[5, 5] 

 f(x) is continuous in [1, 5] 

 Now, f(x)=x25x2 so, it is differentiable in (1, 5) 

 It satisfies both the conditions of the mean value theorem. 

 There exists a real number c(1, 5) such that

 f(c)=f(5)f(1)51 

 c25c2=14(25522512) 

 c25c2=14(26) 

 Squaring both sides, we have

 c225c2=64=32 

 2c2=753c2 

 5c2=75 

 c2=15 

 c=±15 

 c=15(1, 5) 

 Hence, the mean value theorem is verified. 


77. Find a point on the curve y=(x3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)

Ans: Given y=(x3)2 

Function is polynomial so, it will be continuous and differentiable for all real x. 

Mean value theorem is applicable. Points (3, 0) and (4, 1) are on curve so, there exists a real number c(3, 4) such that

 f(c)=f(4)f(3)43 

 2(c3)=101=1 

 c3=12 

 c=3+12=72 

 y=(723)2=(12)2=14 

 Hence the point is (72, 14).


78. Using mean value theorem, prove that there is a point on the curve y=2x25x+3 between the points A(1, 0) and B(2, 1), where tangent is parallel to chord AB. Also find the point. 

Ans:

 Given y=2x25x+3 and points are A(1, 0) and B(2, 1)

 y is a polynomial, so it is continuous and differentiable for all real x. Mean value theorem is applicable. Points (1, 0) and (2, 1) are on curve so, there exists a real number c(1, 2) such that

 f(c)=f(2)f(1)21 

 4c5=101 

 4c=6c=32(1, 2)

There is a tangent to the curve at x=32 where the tangent is parallel to the chord AB. 

Hence proved.

For the point, y=2×(32)25×32+3=92152+62=0 

Point is (32, 0)


Long Answer (L.A.) 

79. Find the values of p and q so that f(x)={x2+3x+p,if  x1qx+2,if  x>1 is differentiable at x=1

Ans:

Given that f(x)={x2+3x+p,if  x1qx+2,if  x>1 at x=1

For differentiability function must be continuous. So, for continuity 

 LHL=f(x)  

 =limx1(x2+3x+p) 

 LHL=4+p

 RHL=f(x)  

 =limx1+(qx+2) 

 RHL=q+2

 f(1)=p+4 

 LHL=RHL=f(1) 

 p+4=q+2 

 p=q2 

Now for differentiability 

 LHD=f(1)=(2x+3)at x=1=5 

 RHD=f(1+)=q 

For differentiability LHD=RHD 

q=5 

p=52=3 

Hence the value of p=3 and q=5


80. If xmyn=(x+y)m+n, prove that 

(i). dydx=yx

Ans: Given xmyn=(x+y)m+n 

xmyn=(x+y)m+n 

ddxxmyn=ddx(x+y)m+n

xmnyn1dydx+mxm1yn=(m+n)(x+y)m+n1(1+dydx) 

(xm nyn1(m+n)(x+y)m+n1)dydx= (m+n)(x+y)m+n1mxm1 yn 

dydx=(m+n)(x+y)m+n1mxm1 yn(xm nyn1(m+n)(x+y)m+n1) 

=xmyn(m+n)(x+y)1mxm1 yn(xm nyn1xmyn(m+n)(x+y)1) 

=(m+n)(x+y)1mx1( ny1(m+n)(x+y)1) 

=x(m+n)m(x+y)( n(x+y)(m+n)y)yx 

=mx+nxmxmynx+nymynyyx 

=nxmynxmyyx 

dydx=yx 

Hence proved.

(ii). d2ydx2=0

Ans: we have dydx=yx 

ddxdydx=ddx(yx) 

d2ydx2=xdydxyx2=xyxyx2 

d2ydx2=0 

Hence proved.


81. If x=sin t  and y=sin pt , prove that (1x2)d2ydx2xdydx+p2y=0

Ans: Given that x=sin t  and y=sin pt  

dxdt=cos t ,dydt=pcos pt  

dydx=dy/dtdx/dt=pcos pt cos t  

d2ydx2=ddx(dydx)=ddt(pcos pt cos t )1dx/dt 

=pcos t (p sin pt )cos pt (sin t )t 1cos t  

(1x2)d2ydx2=p(1t )cos pt sin t psin pt cos t t  

(1x2)d2ydx2=p(cos pt tan t p sin pt ) 

 xdydx=sin t pcos pt cos t =pcos pt tan t  

 p2y=p2sin pt  

 LHS=(1x2)d2ydx2xdydx+p2y 

 =p(cos pt tan t p sin pt )pcos pt tan t +p2sin pt  

 =0 

 Hence proved. 


82. Find dydx, if y=xtan x +x2+12 

Ans: Given y=xtan x +x2+12 

p=xtan x  

Taking log, 

log p =tan x log x  

ddxlog p =ddx(tan x log x ) 

1pdpdx=tan x x+x log x  

ddx(xtan x )=xtan x (tan x x+sec2x log x ) 

ddx(x2+12)=12(xx2+1) 

dydx=ddx(xtan x )+ddx(x2+12) 

dydx=xtan x (tan x x+x log x )+12(xx2+1) 


Choose the correct answers from the given four options in each of the Exercises 83 to 96. 

83. If f(x)=2x and g(x)=x22+1, then which of the following can be a discontinuous function

A. f(x)+g(x) 

B. f(x)g(x)

C. f(x)g(x) 

D. g(x)f(x) 

Ans: The correct answer is option (D).

Given that f(x)=2x and g(x)=x22+1.

We can observe that both the functions are continuous so, 

f+g, fg and fg are continuous but gf is not continuous at the point where f is zero. 

Hence g(x)f(x) can be discontinuous. 

Option (D) is correct.


84. The function f(x)=4x24xx3 

A. Discontinuous at only one point

B. Discontinuous at exactly two points

C. Discontinuous at exactly three points

D. None of these

Ans: The correct answer is option (C).

Given f(x)=4x24xx3 

For points of discontinuity 4xx3=0 

x(4x2)=0 

x(2x)(2+x)=0 

x=0, 2, 2 

Hence f(x) is discontinuous at exactly three points. 

Option (C) is correct. 


85. The set of points where the function f given by f(x)=|2x1|sin x  is differentiable is 

A. R 

B. R{12} 

C. (0, ) 

D. None of these.

Ans: The correct answer is option B.

Given function is f(x)=|2x1|sin x 

f(x)={(2x1)sin x, if x12(2x1)sin x, if x12

We know that modulus function is continuous everywhere but not differentiable at 2x1=0x=12 

Hence, f(x) is differentiable in R{12}.


86. The function f(x)=cot x  is discontinuous on the set

A. {x=nπ:nZ} 

B. {x=2nπ:nZ}

C. {x=(2n+1)π2:nZ}

D. {x=nπ2:nZ}

Ans: The correct answer is option A.

Given f(x)=cot x 

We know that f(x)=cot x  is continuous at xR{nπ, nZ} 

Hence, f(x)=cot x  is discontinuous at {x=nπ: nZ}.


87. The function f(x)=e|x| is

A. Continuous everywhere but not differentiable at x=0 

B. Continuous and differentiable everywhere

C. Not continuous at x=0

D. None of these

Ans: The correct answer is option (A).

Given f(x)=e|x| 

f(x)=e|x|={ex,if x0ex,if x0 

LHL=e0=1 

RHL=e0=1 

 LHL=RHL=f(0), function is continuous. 

f(x)=e|x|={ex,if x0ex,if x0 

LHD=e0=1 

RHD=e0=1 

LHDRHD, function is not differentiable.

Hence continuous everywhere but not differentiable at x=0 

Option (A) is correct.


88. If f(x)=x2sin 1x , where x0, then the value of the function f at x=0, so that the function is continuous at x=0, is

A. 0 

B. 1 

C. 1 

D. None of these

Ans: The correct answer is option (A).

Given f(x)=x2sin 1x , where x0

f(x) =limx0 x2sin 1x  

= 0×(number varying between -1 to 1) 

=0 

Hence the value of f(x) at x=0, so that f(x) be continuous at x=0, is 0. 

Option (A) is correct. 


89. If f(x)={mx+1, if xπ2sin x +n, if x>π2 is continuous at x=π2 then 

A. m=1, n=0 

B. m=nπ2+1

C. n=mπ2

D. m=n=π2

Ans: The correct answer is option (C). 

Given f(x)={mx+1, if xπ2sin x +n, if x>π2

 LHL=f(x)  

 =limxπ2(mx+1) 

 =mπ2+1 

 RHL=limxπ2+f(x) 

 =limxπ2+(sin x +n) 

 =n+1 

 For f(x) to be continuous 

 LHL=RHL 

 mπ2+1=n+1 

 n=mπ2 

 Option (C) is correct. 


90. Let f(x)=|sin x |, then 

A. f is everywhere differentiable

B. f is everywhere continuous but not differentiable at x=nπ, nZ.

C. f is everywhere continuous but not differentiable at x=(2n+1)π2, nZ.

D. None of these.

Ans: The correct answer is option (B).

Given f(x)=|sin x | 

f(x)=|sin x |={sin x,if x0sin x, if x0

Here we observe that f is continuous.

f(x)={cos x, if sin x 0cos x, if sin x 0

At x=nπ, nZ

LHD=f(nπ)=cos nπ =(1)n 

RHD=f(nπ)=cos nπ =(1)n 

LHDRHD 

Hence f is continuous but not differentiable at x=nπ, nZ

Option (B) is correct. 


91. If y=log(1x21+x2) then dydx is equal to

A. 4x31x4 

B. 4x1x4 

C. 14x4 

D. 4x31x4

Ans: The correct answer is option (B).

 Given y=log(1x21+x2)=log(1x2) log (1+x2)  

dydx=ddx(log(1x2))ddx(log(1+x2)) =2x1x22x1+x2 

=2x(1x2+1+x2(1x2)(1+x2)) 

=4x1x4 

Option (B) is correct. 


92. If y=sin x +y, then dydx is equal to 

A. cos x 2y1 

B. cos x 12y 

C. sin x 12y 

D. sin x 2y1 

Ans: The correct answer is option (A).

 Given y=sin x +y 

y2=sin x +y 

y2y=sin x  

ddx(y2y)=ddxsin x  

(2y1)dydx=cos x  

dydx=cos x 2y1 

Option (A) is correct.


93. The derivative of cos1(2x21)  w.r.t cos1x 

A. 2 

B. 121x2 

C. 2x 

D. 1x2 

Ans: The correct answer is option (A)

 We must find derivative of cos1(2x21)  w.r.to cos1x 

 Let t=cos1x x=cos t 

 cos1(2x21) =cos1(2cos2t 1)  

 =cos1(cos 2t )  

 cos1(2x21) =2t 

 dcos1(2x21) dcos1x =d(2t)dt=2 

 Option (A) is correct. 


94. If x=t2, y=t3, then d2ydx2 is

A. 32 

B. 34t 

C. 32t 

D. 34 

Ans: The correct answer is option (B).

Given x=t2, y=t3 

dxdt=2t,dydt=3t2 

dydx=dy/dtdx/dt=3t22t=3t2 

ddx(dydx)=ddx(3t2)=ddt(3t2)1dx/dt 

d2ydx2=32×12t=34t 

 Option (B) is correct.


95. The value of c in Rolle’s theorem for the function f(x)=x33x in the interval [0, 3] is

A. 1 

B. 1 

C. 32 

D. 13 

Ans: The correct answer is option (A).

Given that f(x)=x33x 

Function is continuous and differentiable for all real x and f(0)=0=f(3)

So, Rolle’s theorem is applicable here.

f(x)=3x23 

f(c)=03(c21)=0

c2=1c=±1 

c=1(0, 3) 

Option (A) is correct.


96. For the function f(x)=x+1x , x[1, 3], the value of c for mean value theorem is

A. 1 

B. 3 

C. 2 

D. None of these

Ans: The correct answer is option (B).

Given f(x)=x+1x is continuous in x[1, 3] 

f(x)=11x2 is differentiable in x(1, 3) 

Mean value theorem is applicable here. 

f(c)=11c2=f(3)f(1)31 

11c2=3+13112 

1c2=1432=2432=26=13 

c2=3c=±3 

c=3(1, 3) 

Option (B) is correct. 


Fill in the blanks in each of the exercises 97 to 101:

97. An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ___________. 

Ans: Function |x1|+|x2| is continuous everywhere but it is not differentiable exactly at two points and the points are x=0, x=1


98. Derivative f x2 w.r.to x3 is __________. 

Ans: To find derivative f x2 w.r.to x3 

dx2dx3=dx2dxdx3dx

=2x3x2 

=23x 


99. If f(x)=|cos x |, then f(π4)=__________

Ans: Given f(x)=|cos x | 

At x=π4, f(x)=cos x  

f(x)=sin x  

f(π4)=sin (π4) =12 


100. If f(x)=|cos x sin x |, then f(π3)=_________

Ans: Given f(x)=|cos x sin x | 

f(x)=|cos x sin x |

={sin x cos x, if sin x cos xsin x +cos x, if sin x cos x 

At x=π3, sin x cos x  

f(x)=sin x cos x  

f(x)=cos x +sin x  

f(π3)=cos π3 +sin π3 =12+32 

f(π3)=1+32 


101. For the curve x+y=1,dydx at (14,  14) is ________.

Ans: Given curve is x+y=1 

 ddx(x+y)=ddx1 

 12x+12ydydx=0 

 dydx=yx 

 At (14,  14), dydx=1 


State True or False for the following statements in each of the Exercise 102 to 106.

102. Rolle’s theorem is applicable for the function f(x)=|x1| in [0, 2]

Ans: Given function f(x)=|x1| is continuous in [0, 2] and not differentiable atx=1(0, 2).

Hence the given statement is False. 


103. If f is continuous on its domain D, then |f| is also continuous on D.

Ans: The given statement is True. 


104. The composition of two continuous functions is a continuous function.

Ans: The given statement is True.


105. Trigonometric and inverse trigonometric functions are differentiable in their respective domain

Ans: The given statement is True.


106. If fg is continuous at x=a, then f and g are separately continuous at x=a

Ans: The given statement is False. 


The Various Sub Topics Covered in the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity and Differentiability (Book Solutions) Includes

  • Introduction (5.1)

  • 5.2 Consistency

  • 5.2.1 Continuous Functions Algebra

  • Differentiability (5.3)

  • 5.3.1 Composite Function derivatives

  • 5.3.2 Implicit Function derivatives

  • 5.4 Exponential and logarithmic Functions

  • 5.5 Differentiation on a logarithmic scale

  • 5.6 Function derivatives in parametric forms

  • Second-order derivative (5.7)

  • 5.8 Theorem of Mean Value

WhatsApp Banner

FAQs on NCERT Exemplar for Class 12 Maths Chapter 5 (Book Solutions)

1. Why do you require NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)?

NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions) is necessary for students in Class 12th to complete the NCERT Exemplar problems and solve all their doubts instantly. NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)  covers topics that will be addressed in the board Exams and aids in the development of a solid understanding of the concepts. As a result, solving NCERT Exemplar questions is a prerequisite if one wishes to master the subject for Examinations and further study. Vedantu offers you all of the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)that you require. This is one of the most important Chapters for a student to understand to get a good grade. That is why Vedantu ensures that the students have access to the answers for practice and reference.

2. What will you learn in Chapter 5 of NCERT Exemplar Class 12 Maths Solutions?

In the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions), students will learn about Continuity, Differential, Limits, and their features in-depth. Besides studying Continuity and Discontinuity in-depth, students will also learn about Heine's definition, Cauchy's theorem, and Function Algebra. The idea of Differentiability, its principles, derivatives and their kinds, and the relationships between Differentiability and Continuity are all covered in a separate subtopic of Differentiability. Implicit Functions, Composite Functions, inverse trigonometric Functions, and their derivatives will also be covered in NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity and Differentiability (Book Solutions).

The notion of logarithmic and exponential Functions, as well as their Differentiability, are also covered in the  NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions). The Chapters also cover all of the principles of logarithmic Differentiation. A closer look at parametric versions of Functions and their derivatives, as well as how to handle them, will also be covered.

3. Why is Vedantu the best platform to provide you with the NCERT Exemplar for Class 12 Maths Chapter 5?

We have a team of exceptionally qualified educators who have provided the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions). They have answered every question in the most straightforward, easy and detailed manner possible, ensuring that every student understands the answer right away. The solutions are comprehensive, which means that each step is described in detail as required by the Exam. According to the NCERT syllabus, no shortcuts or cheats are employed in answering the problems. Some of the most important theorems in Calculus Mathematics will be taught. Higher education and a clear comprehension of Advanced Mathematics will improve with a better understanding.

4. What are the most integral topics to be covered in the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)?

Each student should be prepped for the Chapter on Continuity and Differentiability. NCERT Exemplar Class 12 Maths Chapter 5 solutions assist students in not only better-comprehending calculus but in many other topics such as physics. This Chapter delves into the foundations of the Continuity and Differentiability Functions.

Students will study that Continuity is a feature of the Function in NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)  This property indicates that the Function can have a continuous and unbroken wave. Differentiability, on the other hand, is a Function that demonstrates that the domain's derivative exists at each point. Differentiability demonstrates that the graph can have a slope at every point.

5. How can you download the NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions)?

NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions) can be downloaded from the Vedantu website and can be referred to in both online and offline modes. You can download the PDF of NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions) and refer to it offline, and get access to the solutions prepared by the top subject experts, at the convenience of your home. The solutions of NCERT Exemplar for Class 12 Maths Chapter 5 - Continuity And Differentiability (Book Solutions) prepared by the experts of Vedantu is the most accurate, easy to understand, detailed solutions which will not only help you clear all your doubts instantly but also help in strengthening your concepts of the Chapter, building your confidence and ultimately help you perform much better in your final Exams.