Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 8 Maths Solutions Chapter 7 Algebraic Expression, Identities & Factorisation

ffImage
banner

Class 8 Maths NCERT Exemplar Solutions Chapter 7 Algebraic Expression, Identities & Factorisation

Free PDF download of NCERT Exemplar for Class 8 Math Chapter 7 - Algebraic Expression, Identities & Factorisation solved by expert Math teachers on Vedantu.com as per NCERT (CBSE) Book guidelines. All Chapter 7 - Algebraic Expression, Identities & Factorisation exercise questions with solutions to help you to revise the complete syllabus and score more marks in your examinations.


Every NCERT Solution is provided to make the study simple and interesting on Vedantu. Subjects like Science, Math, English will become easy to study if you have access to NCERT Solution for Class 8 Science, Math solutions, and solutions of other subjects. You can also download NCERT Solutions for Class 8 Math to help you to revise the complete syllabus and score more marks in your examinations.

Courses

Solutions for NCERT, Class 8 Science, Chapter 7, Algebraic Expression, Identities & Factorisation are Now Available for a Free Download at Vedantu

Solved Examples 

In examples 1 to 4, there are four options given out of which one is correct. Write the correct answer.


Example 1: Which is the like term as 24a2bc?

(a) 13×8a×2b×c×a

(b) 8×3×a×b×c

(c) 3×8×a×b×c×c

(d) 3×8×a×b×b×c

Ans: The correct answer is (a).

13×8a×2b×c×a=(13×8×2)(a×b×c×a)

(208)(a2bc)

208a2bc, we can see that 24a2bc and 208a2bc are like terms.


Example 2: Which of the following is an identity?

(a) (p+q)2=p2+q2

(b) p2q2=(pq)2

(c) p2q2=p2+2pqq2

(d) (p+q)2=p2+2pq+q2

Ans: The correct answer is (d).

(p+q)(p+q)=p2+2pq+q2

p(p+q)+q(p+q)=p2+2pq+q2

p2+pq+pq+q2=p2+2pq+q2

p2+2pq+q2=p2+2pq+q2


Example 3: The irreducible factorisation of 3a3+6a is

(a) 3a(a2+2)

(b) 3(a3+2)

(c) a(3a2+6)

(d) 3×a×a×a+2×3×a

Ans: The correct answer is 3a(a2+2)

3a3+6a=3(a3+3a)

3a3+6a=3a(a2+3)


Example 4: a(b+c)=ab+ac is

(a)commutative property 

(b) distributive property

(c) associative property 

(d) closure property

Ans: The correct answer is (b).

Distributive property of multiplication over addition is given by 

a×(b+c)=(a×b)+(a×c)


In examples 5 and 6, fill in the blanks to make the statements true.

Example 5: The representation of an expression as the product of its factors is called __________.

Ans: Factorisation.


Examples 6: (x+a)(x+b)=x2+(a+b)x+____

Ans: ab.

Because, (x+a)(x+b)=x(x+b)+a(x+b)

(x+a)(x+b)=x2+bx+ax+ab

(x+a)(x+b)=x2+x(a+b)+ab


In examples 7 to 9, state whether the statements are true (T) or false (F).

Example 7: An identity is true for all values of its variables.

Ans: True.

For example we have (a+b)2=a2+b2+2ab,

Give the value of a=1 and b=2 for the above identity.

(1+2)2=12+22+2(1)(2)

(3)2=1+4+4

9=9


Example 8: Common factor of x2y and xy2 is xy.

Ans: True.

x2y=x×x×y

xy2=1×x×y×y

We can see that the common factor is xy.


Examples 9: (3x+3x2)÷3x=3x2

Ans: False.

(3x+3x2)÷3x=3x+3x23x

3x3x+3x23x

1+x


Examples 10:  Simplify

(i) pqr(p2+q2+r2)

Ans: pqr(p2+q2+r2)

=(pqr)×p2(pqr)×q2(pqr)×r2

=p3qrpq3rpqr3


(ii) (px+qy)(axby)

Ans: (px+qy)(axby)

=px(axby)+qy(axby)

=apx2pbxy+aqxyqby2


Example 11: Find the expansion of the following using suitable identity.

(i) (3x+7y)(3x7y)

Ans: (3x+7y)(3x7y)

Since (a+b)(ab)=a2b2, therefore

(3x+7y)(3x7y)=(3x)2(7y)2

=9x249y2


(ii) (4x5+y4)(4x5+3y4)

Ans: (4x5+y4)(4x5+3y4)

Since (x+a)(x+b)=x2+(a+b)x+ab, therefore

=(4x5)2+(y4+3y4)×4x5+y4×3y4

=[Here, x=4x5,a=y4 and b=3y4]

=16x225+4y4×4x5+3y216

=16x225+4xy5+3y216


Example 12: Factorise the following.

(i) 21x2y3+27x3y2

Ans: 21x2y3+27x3y2

=3×7×x×x×y×y×y+3×3×3×x×x×x×y×y

=3×x×x×y×y(7y+9x) (Using ab+ac=a(b+c))

=3x2y2(7y+9x)


(ii) a34a2+123a

Ans: a34a2+123a

=a2(a4)3a+12

=a2(a4)3(a4)

=(a4)(a23)


(iii) 4x220x+25

Ans: 4x220x+25

=(2x)22×2x×5+(5)2=(2x5)2( Since a22ab+b2=(ab)2)

=(2x5)(2x5)


(iv) y299

Ans: y299

=(y3)232

=(y3+3)(y33)( Since a2b2=(a+b)(ab))


(v) x4256

Ans: x4256

=(x2)2(16)2

=(x2+16)(x216) (using a2b2=(a+b)(ab))

=(x2+16)(x242)

=(x2+16)(x+4)(x4)( using a2b2=(a+b)(ab))


Example 13: Evaluate using suitable identities.

(i)(48)2

Ans: (48)2

=(502)2

Since (ab)2=a22ab+b2, therefore

(502)2=(50)22×50×2+(2)2

=2500200+4

=2504200

=2304


(ii)1812192

Ans: 1812192=(18119)(181+19)

[usinga2 - b2 = (a - b)(a + b)]

=162×200

=32400


(iii)497×505

Ans: 497×505=(5003)(500+5)

=5002+(3+5)×500+(3)(5)

[using(x+a)(x+b)=x2+(a+b)x+ab]

=250000+100015

=250985 


(iv)2.07×1.93

Ans: 2.07×1.93=(2+0.07)(20.07)

=22(0.07)2

=3.9951


Example 14: Verify that

(3x+5y)230xy =9x2+25y2

Ans: L.H.S =(3x+5y)230xy

=(3x)2+2×3x×5y+(5y)230xy

[ Since (a+b)2=a2+2ab+b2]

=9x2+30xy+25y230xy

=9x2+25y2

=R.H.S

Hence, verified.


Example 15: Verify that (11pq+4q)2(11pq4q)2=176pq2

Ans:  L.H.S =(11pq+4q)2(11pq4q)2

Using  (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab

=[(11pq)2+(4q)2+2(11pq)(4q)][(11pq)2+(4q)22(11pq)(4q)]

=(11pq)2+(4q)2+2(11pq)(4q)(11pq)2(4q)2+2(11pq)(4q)

=2(11pq)(4q)+2(11pq)(4q)

=88pq2+88pq2

=176pq2 

=R.H.S

Hence Verified


Example 16: The area of a rectangle is x2+12xy+27y2 and its length is (x+9y). Find the breadth of the rectangle.

Ans:

Breadth =  Area  Length 

=x2+12xy+27y2(x+9y)

=x2+9xy+3xy+27y2(x+9y) 

=x(x+9y)+3y(x+9y)x+9y

 =(x+9y)(x+3y)(x+9y)

 =(x+3y) 


Example 17: Divide 15(y+3)(y216) by 5(y2y12). 

Ans: Factorising 15(y+3)(y216)

we get 5×3×(y+3)(y4)(y+4) 

On factorising 5(y2y12), we get 5(y24y+3y12)


=5[y(y4)+3(y4)] =5(y4)(y+3) 


Therefore, on dividing the first expression by the second expression, we get 15(y+3)(y216)5(y2y12)

=5×3×(y+3)(y4)(y+4)5×(y4)(y+3)

=3(y+4)


Example 18: By using suitable identity, evaluate x2+1x2, if x+1x=5.

Ans: Given that x+1x=5

So, (x+1x)2=25

Now, (x+1x)2=x2+2×x×1x+(1x)2


[Using identity (a+b)2=a2+2ab+b2, with a=x and b=1x]

=x2+2+(1x2)

=x2+(1x2)+2


Since (x+1x)2=25, therefore x2+1x2+2=25

or 

x2+1x2=252=23


Example 19: Find the value of 38222216, using a suitable identity.

Ans: Since a2b2=(a+b)(ab), therefore

382222=(3822)(38+22)

=16×60

So, 38222216=16×6016 =60


Example 20: Find the value of x, if

10000x=(9982)2(18)2

Ans: R.H.S.=(9982)2(18)2

=(9982+18)(998218)

[Since a2b2=(a+b)(ab)]

=(10000)×(9964)

L.H.S.=(10000)×x

Comparing L.H.S. and R.H.S., we get (ab)]

10000x=10000×9964

Or

x=10000×996410000=9964


In questions 1 to 33, there are four options out of which one is correct. Write the correct answer. 

1. The product of a monomial and a binomial is a 

  1. Monomial 

  2. Binomial

  3. Trinomial

  4. None of these 

Ans: b) Binomial 


For example, take a product of monomials with binomials. That is x(x+1)=x2+x, we can see that the obtained result is binomial. 


2. In a polynomial, the exponents of the variables are always 

  1. Integers 

  2. Positive integers 

  3. Non-negative integers 

  4. Non-positive integers 

Ans: b) positive integers 


Because, we will not consider the expression as a polynomial which consists of a variable having negative or fractional exponents.  


3. Which of the following is correct?

  1. (ab)2=a2+2abb2

  2. (ab)2=a22ab+b2

  3. (ab)2=a2b2

  4. (a+b)2=a2+2abb2

Ans: b) (ab)2=a22ab+b2


Because,

(ab)(ab)=a22ab+b2

a(ab)b(ab)=a22ab+b2

a2abab+b2=a22ab+b2

a22ab+b2=a22ab+b2


4. The sum of 7pq and 2pq is

  1. 9pq 

  2. 9pq 

  3. 5pq  

  4. 5pq.

Ans: d) 5pq.


We have the sum of two monomials,

 7pq+2pq

5pq


5. If we subtract 3x2y2 from x2y2, then we get

  1. 4x2y2

  2. 2x2y2

  3. 2x2y2

  4. 4x2y2

Ans: d) 4x2y2


If we subtract 3x2y2 from x2y2, then we get

x2y2(3x2y2)

x2y2+3x2y2

4x2y2


6. Like term as 4m3n2 is

  1. 4m2n2

  2. 6m3n2

  3. 6pm3n2

  4. 4m3n

Ans: b) 6m3n2


Like terms are the terms in which a variable and its exponents are the same.


7. Which of the following is a binomial?

  1. 7×a+a

  2. 6a2+7b+2c

  3. 4a×3b×2c

  4. 6(a2+b)

Ans: d) 6(a2+b)


Binomial is an expression which contains two unlike terms. Only option d) has two terms.


8. Sum of ab+ab,b+cbc and caac is

  1. 2c+abacbc

  2. 2cabacbc

  3. 2c+ab+ac+bc

  4. 2cab+ac+bc

Ans: a) 2c+abacbc


(ab+ab)+(b+cbc)+(caac)

ab+ab+b+cbc+caac

aa+bb+c+c+abbcac

2c+abbcac


9. Product of the following monomials 4p,7q3,7pq is

  1. 196p2q4

  2. 196pq4

  3. 196p2q4

  4. 196p2q3

Ans: a) 196p2q4


Because, 4p×7q3×7pq

196p2q4



10. Area of a rectangle with length 4ab and breadth 6b2 is

  1. 24a2b2

  2. 24ab3

  3. 24ab2

  4. 24ab

Ans: b) 24ab3


Area of a rectangle is the product of its length and breadth.


That is 4ab×6b2

24ab3


11. Volume of a rectangular box (cuboid) with length =2ab, breadth = 3ac and height =2ac is

  1. 12a3bc2

  2. 12a3bc

  3. 12a2bc

  4. 2ab+3ac+2ac

Ans: a) 12a3bc2


Volume of a rectangular box (cuboid) = length×breadth×height 

Volume of rectangular box (cuboid) =2ab×3ac×2ac=12a3bc2


12. Product of 6a27b+5ab and 2ab is

  1. 12a3b14ab2+10ab

  2. 12a3b14ab2+10a2b2

  3. 6a27b+7ab

  4. 12a2b7ab2+10ab

Ana: b) 12a3b14ab2+10a2b2

2ab(6a27b+5ab)

12a3b14ab2+10a2b2


13. Square of 3x4y is

  1. 9x216y2

  2. 6x28y2

  3. 9x2+16y2+24xy

  4. 9x2+16y224xy

Ans: d) 9x2+16y224xy


We know that (ab)2=a22ab+b2

(3x4y)2=(3x)2+(4y)22(3x)(4y)

(3x4y)2=9x2+16y224xy


14. Which of the following are like terms?

  1. 5xyz2,3xy2z

  2. 5xyz2,7xyz2

  3. 5xyz2,5x2yz

  4. 5xyz2,x2y2z2

Ans: b) 5xyz2,7xyz2


We know that Like terms are the terms in which a variable and its exponents are the same.


15. Coefficient of y in the term y3 is

  1. 1

  2. 3

  3. 13

  4. 13

Ans: c) 13


16. a2b2 is equal to

  1. (ab)2

  2. (ab)(ab)

  3. (a+b)(ab)

  4. (a+b)(a+b)

Ans: c) (a+b)(ab)

(a+b)(ab)=a(ab)+b(ab)

(a+b)(ab)=a2ab+abb2

(a+b)(ab)=a2b2


17. Common factor of 17abc,34ab2,51a2b is

  1. 17abc

  2. 17ab

  3. 17ac

  4. 17a2b2c

Ans: b) 17ab


Because all of the terms are multiples of 17 and all of the terms have ab, we chose 17ab as a common factor.


18. Square of 9x7xy is

  1. 81x2+49x2y2

  2. 81x249x2y2

  3. 81x2+49x2y2126x2y

  4. 81x2+49x2y263x2y

Ans: c) 81x2+49x2y2126x2y


We know that (ab)2=a22ab+b2

(9x7xy)2=(9x)2+(7xy)22(9x)(7xy)

(9x7xy)2=81x2+49x2y2126x2y


19. Factored form of 23xy46x+54y108 is

  1. (23x+54)(y2)

  2. (23x+54y)(y2)

  3. (23xy+54y)(46x108)

  4. (23x+54)(y+2)

Ans: a) (23x+54)(y2)


23xy46x+54y108


In first two terms take 23x common and in the remaining term take 54 common

23x(y2)+54(y2)

(y2)(23x+54)


20. Factored form of r210r+21 is

  1. (r1)(r4)

  2. (r7)(r3)

  3. (r7)(r+3)

  4. (r+7)(r+3)

Ans: b) (r7)(r3)


r210r+21


Split the middle term,

r27r3r+21

r(r7)3(r7)

(r7)(r3)


21. Factored form of p217p38 is

  1. (p19)(p+2)

  2. (p19)(p2)

  3. (p+19)(p+2)    

  4. (p+19)(p2)

Ans: a) (p19)(p+2)


p217p38

p219p+2p38

p(p19)+2(p19)

(p19)(p+2)


22. On dividing 57p2qr by 114pq, we get

  1. 14pr

  2. 34pr

  3. 12pr

  4. 2pr

Ans: c) 12pr


On dividing 57p2qr by 114pq, we get

57p2qr114pq

1pr2


23. On dividing p(4p216) by 4p(p2), we get

  1. 2p+4

  2. 2p4

  3. p+2

  4. p2

Ans: c) p+2


On dividing p(4p216) by 4p(p2), we get

p(4p216)4p(p2)=4p(p24)4p(p2)


=4p((p)222)4p(p2)


We know (a+b)(ab)=a2b2

=(p+2)(p2)(p2)

=(p+2)


24. The common factor of 3ab and 2cd is

  1. 1

  2. 1

  3. a

  4. c

Ans: a) 1


Because in both terms we don’t have any common factors.


25. An irreducible factor of 24x2y2 is

  1. x2

  2. y2

  3. x

  4. 24x

Ans: c) x


An irreducible factor is a factor which can not be expressed as a product of factors. Hence option c) is correct. Remaining options can be expressed as a product of factors.


26. Number of factors of (a+b)2 is

  1. 4

  2. 3

  3. 2

  4. 1

Ans: c) 2


(a+b)2=a2+b2+2ab=(a+b)(a+b)

Hence, the factors are (a+b)(a+b)


27. The factored form of 3x24 is

  1. 3x×24

  2. 3(x8)

  3. 24(x3)

  4. 3(x12)

Ans: b) 3(x8)


3x24=3(x8)


28. The factors of x24 are

  1. (x2),(x2)

  2. (x+2),(x2)

  3. (x+2),(x+2)

  4. (x4),(x4)

Ans: b) (x+2),(x2)


We know that (a+b)(ab)=a2b2

x24=x222

x24=(x+2)(x2)


29. The value of (27x2y)÷(9xy) is

  1. 3xy

  2. 3xy

  3. 3x

  4. 3x

Ans: d) 3x


(27x2y)÷(9xy)

27x2y9xy

3x


30. The value of (2x2+4)÷2 is

  1. 2x2+2

  2. x2+2

  3. x2+4

  4. 2x2+4

Ans: b) x2+2


(2x2+4)÷2=2x2+42

2x22+42

x2+2


31. The value of (3x3+9x2+27x)÷3x is

  1. x2+9+27x

  2. 3x3+3x2+27x

  3. 3x3+9x2+9

  4. x2+3x+9

Ans: d) x2+3x+9


(3x3+9x2+27x)÷3x=3x3+9x2+27x3x

=3x33x+9x23x+27x3x

=x2+3x+9


32. The value of (a+b)2+(ab)2 is

  1. 2a+2b

  2. 2a2b

  3. 2a2+2b2

  4. 2a22b2

Ans: c) 2a2+2b2


We know (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab, then 


(a+b)2+(ab)2=(a2+b2+2ab)+(a2+b22ab)

(a+b)2+(ab)2=a2+a2+b2+b2+2ab2ab

(a+b)2+(ab)2=2a2+2b2


33. The value of (a+b)2(ab)2 is

  1. 4ab

  2. 4ab

  3. 2a2+2b2

  4. 2a22b2.

Ans: a) 4ab


We know (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab, then 


(a+b)2(ab)2=(a2+b2+2ab)(a2+b22ab)

(a+b)2(ab)2=a2a2+b2b2+2ab+2ab

(a+b)2(ab)2=4ab


In questions 34 to 58, fill in the blanks to make the statements true:

34. The product of two terms with like signs is a ________ term.

Ans: The product of two terms with like signs is a positive term.

For example, (x)×(x)=+x2


35. The product of two terms with unlike signs is a _______ term.

Ans: The product of two terms with unlike signs is a negative term

For example, (x)×(x)=x2


36. a(b+c)=a×_____+a×______

Ans: a(b+c)=a×b+a×c


37. (ab)_______=a22ab+b2

Ans: (ab)


Because, (ab)(ab)=a(ab)b(ab)

=a2abab+b2

=a22ab+b2


38. a2b2=(a+b)_______

Ans: (ab)


Because (a+b)(ab)=a(ab)+b(ab)

=a2ab+abb2

=a2b2


39. (ab)2+_______=a2b2

Ans: 2b22ab


Let the required term is M 

Then by the question, (ab)2+M=a2b2

M=a2b2(ab)2

M=a2b2(a2+b2+2ab)

M=a2b2a2b22ab

M=2b22ab


40. (a+b)22ab=______+_____

Ans: a2+b2

(a+b)22ab=(a2+b2+2ab)2ab

=a2+b2+2ab2ab

=a2+b2


41. (x+a)(x+b)=x2+(a+b)x+_____

Ans: ab

(x+a)(x+b)=x(x+b)+a(x+b)

(x+a)(x+b)=x2+bx+ax+ab

(x+a)(x+b)=x2+(a+b)x+ab


42. The product of two polynomials is a _____________

Ans: The product of two polynomials is a polynomial.


For example, (a+b)(ab)=a(ab)+b(ab)

=a2ab+abb2

=a2b2


43. Common factor of ax2+bx is _____________

Ans: Common factor of ax2+bx is x.


ax2=a×x×x

bx=b×x

We can see that x is the only common factor.


44. Factored form of 18mn+10mnp is ___________

Ans: Factored form of 18mn+10mnp is 2mn(9+5p)

18mn+10mnp=2mn(9+5p)


45. Factored form of 4y212y+9 is ____________

Ans: Factored form of 4y212y+9 is (2y3)2

4y212y+9=4y26y6y+9

=2y(2y3)3(2y3)

=(2y3)(2y3)

=(2y3)2


46. 38x3y2z÷19xy2 is equal to _____________

Ans: 38x3y2z÷19xy2 is equal to 2x2z

38x3y2z÷19xy2=38x3y2z19xy2

38x3y2z÷19xy2=2x2z

38x3y2z÷19xy2=38x2z19


47. Volume of a rectangular box with length 2x, breadth 3y and height 4z is

Ans: Volume of a rectangular box with length 2x, breadth 3y and height 4z is 24xyz.


We know that Volume of a rectangular box = length×breadth×height 


Volume of rectangular box (cuboid) =2x×3y×4z=24xyz


48. 672372=(6737)×_____=______

Ans: 672372=(6737)×(67+37)=3120


Because by using the identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]

672372=(6737)×(67+37)

672372=30×104

672372=3120


49. 10321022=_______×(103102)=______ 

Ans: 10321022=(103+102)×(103102)=205


Because by using the identity a2b2=(a+b)(ab)

10321022=(103+102)×(103102)

10321022=205×1

10321022=205


50. Area of a rectangular plot with sides 4x2 and 3y2 is ________

Ans: Area of a rectangular plot with sides 4x2 and 3y2 is 12x2y2.


We know that Area of a rectangle is the product of its length and breadth.


That is 4x2×3y2

12x2y2


51. Volume of a rectangular box with l=b=h=2x is ________

Ans: Volume of a rectangular box with l=b=h=2x is 8x3


We know that Volume of a rectangular box = length×breadth×height 

Volume of rectangular box (cuboid) =2x×2x×2x=8x3


52. The coefficient in 37abc is _______

Ans: The coefficient in 37abc is 37.


53. Number of terms in the expression a2+bc×d is ________

Ans: Number of terms in the expression a2+bc×d is 2.


Because a2+bc×d=a2+bcd.


54. The sum of areas of two squares with sides 4a and 4b is ________

Ans: The sum of areas of two squares with sides 4a and 4b is 16(a2+b2).


The area of square with side 4a is (4a)2=16a2


The area of square with side 4b is (4b)2=16b2


Now the sum of areas of two squares with sides 4a and 4b is 16a2+16b2=16(a2+b2).


55. The common factor method of factorisation for a polynomial is based on ________ property.

Ans: The common factor method of factorisation for a polynomial is based on distributive property.


56. The side of the square of area 9y2 is________

Ans: The side of the square of area 9y2 is 3y.

Because we know that Area of square = (side)2

9y2=(side)2

side=9y2

side=3y


57. On simplification 3x+33= ________

Ans: On simplification 3x+33=x+1 


Because, 

3x+33=3x3+33 

3x+33=x+1


58. The factorisation of 2x+4y is ________

Ans: The factorisation of 2x+4y is 2(x+2y)


2x+4y=(2×x)+(2×2×y)

2x+4y=2(x+2y)


In questions 59 to 80, state whether the statements are True (T) or False (F):

59. (a+b)2=a2+b2

Ans: False


Because we know the formula, (a+b)2=a2+b2+2ab.


60. (ab)2=a2b2

Ans: False


Because we know the formula, (ab)2=a2+b22ab.


61. (a+b)(ab)=a2b2

Ans: True


Because (a+b)(ab)=a(ab)+b(ab)

(a+b)(ab)=a2ab+bab2

(a+b)(ab)=a2b2


62. The product of two negative terms is a negative term.

Ans: False


Because we know that the product of two negative terms is a positive term.


For example, x×y=(1)×(1)×x×y

x×y=xy, as we can see that the product of two negative terms is positive.


63. The product of one negative and one positive term is a negative term.

Ans: True


Because we know that the product of two negative terms is a negative term.


For example, x×y=(1)×(1)×x×y


x×y=xy,  as we can see that the product of two negative terms is positive.


64. The coefficient of the term 6x2y2 is 6.

Ans: True


Because the coefficient of the term 6x2y2 is 6 only.


65. p2q+q2r+r2q is a binomial.

Ans: False.


We can see that the given expression has three unlike terms, hence it is a trinomial not a binomial. 


66. The factors of a22ab+b2 are (a+b) and (a+b).

Ans: False.


a22ab+b2=a2abab+b2

=a(ab)b(ab)

=(ab)(ab)


We can see that the factors are (ab) and (ab)


67. Ish a factor of 2π(h+r).

Ans: False.


Because the factors of 2π(h+r) are 2, π and (h+r).


68. Some of the factors of n22+n2 are 12,n and (n+1).

Ans: True.


Because, n22+n2=12(n2+n)


n22+n2=n×12×(n+1)


Hence, some of the factors of n22+n2 are 12,n and (n+1).


69. An equation is true for all values of its variables.

Ans: False.


Because, most of the algebraic equations are true when certain values are substituted for the variable and false for all other values.


70. x2+(a+b)x+ab=(a+b)(x+ab)

Ans: False.


x2+(a+b)x+ab=(a+b)(x+ab)

x2+ax+bx+ab=(a+b)(x+ab)

x(x+a)+b(x+a)=(a+b)(x+ab)

(x+a)(x+b)=(a+b)(x+ab)


71. Common factor of 11pq2,121p2q3,1331p2q is 11p2q2.

Ans: False.


11pq2=11×p×q×q

121p2q3=11×11×p×p×q×q×q

1331p2q=11×11×11×p×p×q


We can see that the common factor is 11pq


72. Common factor of 12a2b2+4ab232 is 4.

Ans: True.


12a2b2+4ab232=4(3a2b2+ab28), we can see that each term is a multiple of 4. 


73. Factorisation of 3a2+3ab+3ac is 3a(abc).

Ans: False.


Because,

3a2+3ab+3ac


Taking 3 common in each term, we have 

3a2+3ab+3ac=3(a2+ab+ac)


Again, each term contains ‘a’. Taking common we have 

3a2+3ab+3ac=3a(a+b+c)


74. Factored form of p2+30p+216 is (p+18)(p12).

Ans: False.


Because,

p2+30p+216

=p2+18p+12p+216

=p(p+18)+12(p+18)

=(p+18)(p+12)


75. The difference of the squares of two consecutive numbers is their sum.

Ans: True.


Let the two consecutive terms be x and (x+1).


The squares of these numbers are x2 and (x+1)2.


Difference of the squares of two consecutive numbers =(x+1)2x2


Applying the identity (a+b)2=a2+b2+2ab we have 

=x2+1+2xx2

=2x+1

=x+x+1

=(x)+(x+1), that is, it is the sum of their sum.


76. abc+bca+cab is a monomial.

Ans: True.


Because, in the given expression we have 3 like terms and we can add them. 

abc+bca+cab=abc+abc+abc=3abc


77. On dividing p3 by 3p, the quotient is 9.

Ans: False.


Because,

(p3)(3p)=p3×3p=1


78. The value of p for 512492=100p is 2.

Ans: True.


512492=100p


By applying the identity a2b2=(ab)(a+b)

(51+49)(5149)=100p

(51+49)(5149)=100p

(100)(2)=100p

200=100p

p=200100

p=2


79. (9x51)÷9 is x51.

Ans: False.


(9x51)÷9=(9x51)9

(9x51)÷9=9x9519

(9x51)÷9=x519


80. The value of (a+1)(a1)(a2+1) is a41.

Ans: True.


(a+1)(a1)(a2+1)


By applying the identity a2b2=(ab)(a+b)

(a21)(a2+1)


Again, by applying the identity a2b2=(ab)(a+b)


(a41)


81. Add:

  1. 7a2bc,3abc2,3a2bc,2abc2

Ans:

(7a2bc)+(3abc2)+(3a2bc)+(2abc2)

7a2bc3abc2+3a2bc+2abc2


Grouping like terms

7a2bc+3a2bc3abc2+2abc2

10a2bcabc2


  1. 9ax,+3bycz,5by+ax+3cz

Ans:

(9ax)+(+3bycz)+(5by+ax+3cz)

9ax+3bycz5by+ax+3cz


Grouping like terms

9ax+ax+3by5bycz+3cz

10ax2by+2cz


  1. xy2z2+3x2y2z4x2yz2,9x2y2z+3xy2z2+x2yz2

Ans:

(xy2z2+3x2y2z4x2yz2)+(9x2y2z+3xy2z2+x2yz2)

xy2z2+3x2y2z4x2yz29x2y2z+3xy2z2+x2yz2


Grouping like terms

xy2z2+3xy2z2+3x2y2z9x2y2z4x2yz2+x2yz2

4xy2z26x2y2z3x2yz2


  1. 5x23xy+4y29,7y2+5xy2x2+13

Ans:

(5x23xy+4y29)+(7y2+5xy2x2+13)

5x23xy+4y29+7y2+5xy2x2+13


Grouping like terms

5x22x23xy+5xy+4y2+7y29+13

3x2+2xy+11y2+4


  1. 2p43p3+p25p+7,3p47p33p2p12

Ans:

2(p43p3+p25p+7)+(3p47p33p2p12)

(2p46p3+2p210p+14)+(3p47p33p2p12)

2p46p3+2p210p+143p47p33p2p12


Grouping like terms

2p43p46p37p3+2p23p210pp+1412

p413p3p211p+2



  1. 3a(ab+c),2b(ab+c)

Ans:

3a(ab+c)+2b(ab+c)

3a23ab+3ac+2ba2b2+2bc


Grouping like terms

3a23ab+2ba+3ac+2bc2b2

3a2ab+3ac+2bc2b2


  1. 3a(2b+5c),3c(2a+2b)

Ans:

3a(2b+5c)+3c(2a+2b)

6ab+15ac+6ac+6bc


Adding like terms,

6ab+21ac+6bc


82. Subtract:

  1. 5a2b2c2 from 7a2b2c2

Ans:

7a2b2c25a2b2c2

12a2b2c2


  1. 6x24xy+5y2 from 8y2+6xy3x2

Ans: 

(8y2+6xy3x2)(6x24xy+5y2)

8y2+6xy3x26x2+4xy5y2


Grouping like terms,

8y25y23x26x2+4xy+6xy

3y29x2+10xy


  1. 2ab2c2+4a2b2c5a2bc2 from 10a2b2c+4ab2c2+2a2bc2

Ans:

(10a2b2c+4ab2c2+2a2bc2)(2ab2c2+4a2b2c5a2bc2)

10a2b2c+4ab2c2+2a2bc22ab2c24a2b2c+5a2bc2


Grouping like terms,

10a2b2c4a2b2c+4ab2c22ab2c2+2a2bc2+5a2bc2

14a2b2c+2ab2c2+7a2bc2


  1. 3t44t3+2t26t+6 from 4t4+8t34t22t+11

Ans:

(4t4+8t34t22t+11)(3t44t3+2t26t+6)

4t4+8t34t22t+113t4+4t32t2+6t6


Grouping like terms,

4t43t4+8t3+4t34t22t22t+6t+116

7t4+12t36t2+4t+5


  1. 2ab+5bc7ac from 5ab2bc2ac+10abc

Ans:

(5ab2bc2ac+10abc)(2ab+5bc7ac)

5ab2bc2ac+10abc2ab5bc+7ac


Grouping like terms,

5ab2ab2bc5bc+7ac2ac+10abc

3ab7bc+5ac+10abc


  1. 7p(3q+7p) from 8p(2p7q)

Ans:

(8p(2p7q))(7p(3q+7p))

(16p256pq)(21pq+49p2)

16p256pq21pq49p2

16p277pq49p2


  1. 3p2+3pq+3px from 3p(par)

Ans:

(3p(par))(3p2+3pq+3px)

(3p23pa3pr)(3p2+3pq+3px)

3p23pa3pr+3p23pq3px

3p2+3p23pa3pr3pq3px

3pa3pr3pq3px

3p(a+r+q+x)


83. Multiply the following:

  1. 7pq2r3,13p3q2r

Ans:

(7pq2r3)×(13p3q2r)

(7×13)×(pq2r3×p3q2r)

(91)×(p4q4r4)

91p4q4r4


  1. 3x2y2z2,17xyz

Ans:

(3x2y2z2)×(17xyz)

(3×17)×(x2y2z2×xyz)

(51)×(x3y3z3)

51x3y3z3


  1. 15xy2,17yz2

Ans:

(15xy2)×(17yz2)

(15×17)×(xy2×yz2)

(255)×(xy3z2)

255xy3z2


  1. 5a2bc,11ab,13abc2

Ans:

(5a2bc)×(11ab)×(13abc2)

(5×11×13)×(a2bc×ab×abc2)

(715)×(a4b3c3)

715a4b3c3


  1. 3x2y,(5yxy)

Ans:

(3x2y)×(5yxy)

(3x2y×5y)(3x2y×xy)

(15x2y2)(3x3y2)

15x2y2+3x3y2


  1. abc,(bc+ca)

Ans:

$\begin{gathered}

   \Rightarrow abc \times (bc + ca) \hfill \\

   \Rightarrow \left( {abc \times bc} \right) + \left( {abc \times ca} \right) \hfill \\

   \Rightarrow a{b^2}{c^2} + {a^2}b{c^2} \hfill \\ 

\end{gathered} $



  1. 7pqr,(pq+r)

Ans:

7pqr×(pq+r)


Multiplying 7pqr to each term we will have,

7p2qr7pq2r+7pqr2


  1. x2y2z2,(xyyz+zx)

Ans:

x2y2z2×(xyyz+zx)


Multiplying x2y2z2 to all the three terms we will have

x3y3z2x2y3z3+x3y2z3


  1. (p+6),(q7)

Ans:

(p+6)(q7)=p(q7)+6(q7)

(p+6)(q7)=pq7p+6q42


  1. 6mn,0mn

Ans:

6mn×0mn

0


  1. a,a5,a6

Ans:

a×a5×a6

a1+5+6

a12


  1. 7st,1,13st2

Ans:

7st×1×13st2

(7×1×13)×(st×st2)

(91)×(s2t3)

91s2t3


  1. b3,3b2,7ab5

Ans:

b3×3b2×7ab5

21ab10


  1. 1009rs;34r3s2

Ans:

(1009rs)×(34r3s2)

(1009×34)×(rs×r3s2)

(253)×(r4s3)

253r4s3


  1. (a2b2),(a2+b2)

Ans:

(a2b2)×(a2+b2)

a2(a2+b2)b2(a2+b2)

a4+a2b2a2b2b4


Cancelling like terms 

a4b4


  1. (ab+c),(ab+c)

Ans:

(ab+c)(ab+c)=ab(ab+c)+c(ab+c)

a2b2+abc+abc+c2


Adding like terms 

a2b2+2abc+c2


  1. (pq2r),(pq2r)

Ans:

(pq2r)(pq2r)=pq(pq2r)2r(pq2r)

p2q22pqr2pqr+4r2

p2q24pqr+4r2


  1. (34x43y),(23x+32y)

Ans:

(34x43y)×(23x+32y)

34x(23x+32y)43y(23x+32y)

12x2+98xy89xy126y2

12x2+98xy89xy2y2

12x2+98xy89xy2y2


  1. 32p2+23q2,(2p23q2)

Ans:

(32p2+23q2)×(2p23q2)

2p2(32p2+23q2)3q2(32p2+23q2)

(3p4+43q2p2)(92q2p2+2q4)

3p4+43q2p292q2p22q4

3p42q4+43q2p292q2p2

3p42q4+q2p2[4392]

3p42q4+q2p2[8276]

3p42q4+q2p2[196]

3p42q4196q2p2


  1. (x25x+6),(2x+7)

Ans:

(x25x+6)×(2x+7)=(2x+7)×(x25x+6)

(x25x+6)×(2x+7)

(2x+7)×(x25x+6)

2x(x25x+6)+7(x25x+6)

2x310x2+12x+7x235x+42


Grouping like terms we have,

2x310x2+7x2+12x35x+42

2x33x223x+42


  1. (3x2+4x8),(2x24x+3)

Ans:

(3x2+4x8)×(2x24x+3)

3x2(2x24x+3)+4x(2x24x+3)8(2x24x+3)

6x412x3+9x2+8x316x2+12x16x2+32x24


Grouping like terms we have

6x412x3+8x3+9x216x216x2+12x+32x24

6x44x323x2+44x24


  1. (2x2y3),(x+y+5)

Ans:

(2x2y3)×(x+y+5)

2x(x+y+5)2y(x+y+5)3(x+y+5)

2x2+2xy+10x2xy2y210y3x3y15


Grouping like terms 

2x22y2+2xy2xy+10x3x10y3y15

2x22y2+7x13y15


84. Simplify

  1. (3x+2y)2+(3x2y)2

Ans: We know (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab, applying the identity we will have 

(3x+2y)2+(3x2y)2

9x2+4y2+12xy+9x2+4y212xy

9x2+4y2+9x2+4y2

18x2+8y2


  1. (3x+2y)2(3x2y)2

Ans: We know that a2b2=(a+b)(ab), by comparing it with the given problem and solving we will have

(3x+2y)2(3x2y)2

(3x+2y+3x2y)(3x+2y3x+2y)

(3x+3x)(2y+2y)

(6x)(4y)

24xy


  1. (79a+97b)2ab

Ans: We know (a+b)2=a2+b2+2ab , applying this identity we will have

(79a+97b)2ab

(79a)2+(97b)2+2(79a)(97b)ab

4981a2+8149b2+2abab

4981a2+8149b2+ab


  1. (34x43y)2+2xy

Ans: We know (ab)2=a2+b22ab , applying this identity we will have

(34x43y)2+2xy

(34x)2+(43y)22(34x)(43y)+2xy

916x2+169y22xy+2xy

916x2+169y2


  1. (1.5p+1.2q)2(1.5p1.2q)2

Ans: We know that a2b2=(a+b)(ab), by comparing it with the given problem and solving we will have

(1.5p+1.2q)2(1.5p1.2q)2

(1.5p+1.2q+1.5p1.2q)(1.5p+1.2q1.5p+1.2q)

(1.5p+1.5p)(1.2q+1.2q)

(3p)(2.4q)

7.2pq


  1. (2.5m+1.5q)2+(2.5m1.5q)2

Ans: We know (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab, applying the identity we will have 

(2.5m)2+(1.5q)2+2(2.5m)(1.5q)+(2.5m)2+(1.5q)22(2.5m)(1.5q)

(2.5m)2+(1.5q)2+(2.5m)2+(1.5q)2

6.25m2+2.25q2+6.25m2+2.25q2

12.5m2+4.5q2


  1. (x24)+(x2+4)+16

Ans:

(x24)+(x2+4)+16

x24+x2+4+16

2x2+16


  1. (abc)2+2abc

Ans: We know (ab)2=a2+b22ab , applying this identity we will have

(abc)2+2abc

a2b2+c22abc+2abc

a2b2+c2


  1. (ab)(a2+b2+ab)(a+b)(a2+b2ab)

Ans: 

(ab)(a+b)2(a+b)(ab)2

Ans: Given,

(ab)(a2+b2+ab)(a+b)(a2+b2ab)

Now we solve (ab)(a2+b2+ab) and (a+b)(a2+b2ab)

Now,

(ab)(a2+b2+ab)=a(a2+b2+ab)b(a2+b2+ab) 

(ab)(a2+b2+ab)=a3+ab2+a2ba2bb3ab2

Grouping like terms,

(ab)(a2+b2+ab)=a3b3+ab2ab2+a2ba2b

(ab)(a2+b2+ab)=a3b3(1)

Now,

(a+b)(a2+b2ab)=a(a2+b2ab)+b(a2+b2ab)

(a+b)(a2+b2ab)=a3+ab2a2b+a2b+b3ab2(a+b)(a2+b2ab)=a3+b3+ab2ab2+a2ba2b

Grouping like terms,

(a+b)(a2+b2ab)=a3+b3(2)

Now the given problem becomes 

(ab)(a2+b2+ab)(a+b)(a2+b2ab)

Using equation 1 and equation 2 we will have,

(a3b3)(a3+b3)

a3b3a3b3

2b3



  1. (b249)(b+7)+343

Ans:

(b249)(b+7)+343

b2(b+7)49(b+7)+343

b3+7b249b343+343

b3+7b249b


  1. (4.5a+1.5b)2+(4.5b+1.5a)2

Ans: We know (a+b)2=a2+b2+2ab and (ab)2=a2+b22ab, applying the identity we will have 

(4.5a+1.5b)2+(4.5b+1.5a)2

20.25a2+2.25b2+13.5ab+20.25b2+2.25a2+13.5ab


Now grouping like terms 

20.25a2+2.25a2+2.25b2+20.25b2+13.5ab+13.5ab

22.5a2+22.5b2+27ab


  1. (pqqr)2+4pq2r

Ans: We know (ab)2=a2+b22ab , applying this identity we will have

p2q2+q2r22pq2r+4pq2r

p2q2+q2r2+2pq2r


  1. (s2t+tq2)2(2stq)2

Ans: We know (a+b)2=a2+b2+2ab , applying this identity we will have

(s2t)2+(tq2)2+2(s2t)(tq2)(2stq)2

s4t2+t2q4+2s2t2q24s2t2q2

s4t2+t2q42s2t2q2


85. Expand the following, using suitable identities.

  1. (xy+yz)2

Ans: We know (a+b)2=a2+b2+2ab, applying this we will have 

(xy+yz)2=(xy)2+(yz)2+2(xy)(yz)

(xy+yz)2=x2y2+y2z2+2xy2z


  1. (x2yxy2)2

Ans: We know (ab)2=a2+b22ab, applying this we will have 

(x2yxy2)2=(x2y)2+(xy2)22(x2y)(xy2)

(x2yxy2)2=x4y2+x2y42x3y3


  1. (45a+54b)2

Ans: We know (a+b)2=a2+b2+2ab, applying this we will have (45a+54b)2=(45a)2+(54b)+2(45a)(54b)

(45a+54b)2=1625a2+2516b2+2ab


  1. (23x32y)2

Ans: We know (ab)2=a2+b22ab, applying this we will have 

(23x32y)2=(23x)2+(32y)22(23x)(32y)

(23x32y)2=49x2+94y22xy


  1. (45p+53q)2

Ans: We know (a+b)2=a2+b2+2ab, applying this we will have 

 (45p+53q)2=(45p)2+(53q)2+2(45p)(53q)

(45p+53q)2=1625p2+259q2+83pq


  1. (x+3)(x+7).

Ans: We know (x+a)(x+b)=x2+(a+b)x+ab, then we have

(x+3)(x+7)=x2+(3+7)x+(7×3)

(x+3)(x+7)=x2+10x+21


  1. (2x+9)(2x7)

Ans: We know (x+a)(xb)=x2+(ab)xab, then we have

(2x+9)(2x7)=(2x)2+(97)2x(9×7)

(2x+9)(2x7)=2x2+(2)2x(63)

(2x+9)(2x7)=2x2+4x63


  1. (4x5+y4)(4x5+3y4)

Ans: We (x+a)(x+b)=x2+(a+b)x+ab, then we have

(4x5+y4)(4x5+3y4)=(4x5)2+(y4+3y4)4x5+(y4×3y4)

(4x5+y4)(4x5+3y4)=16x225+(4y4)4x5+(3y216)

(4x5+y4)(4x5+3y4)=16x225+16xy20+3y216


  1. (2x323)(2x3+2a3)

Ans: We (xa)(x+b)=x2+(ba)xab, then we have

(2x323)(2x3+2a3)=(2x3)2+(2a323)2x3(2a3×23)

(2x323)(2x3+2a3)=4x9+(2a23)2x34a9

(2x323)(2x3+2a3)=4x9+4xa94x94a9


  1. (2x5y)(2x5y)

Ans: (2x5y)(2x5y)=(2x5y)2

We know that (ab)2=a2+b22ab

(2x5y)2=(2x)2+(5y)22(2x)(5y)

(2x5y)2=4x2+25y220xy


  1. (2a3+b3)(2a3b3)

Ans: We know that a2b2=(a+b)(ab), then we have 

(2a3+b3)(2a3b3)=(2a3)2(b3)2

(2a3+b3)(2a3b3)=4a29b29


  1. (x2+y2)(x2y2)

Ans: We know that a2b2=(a+b)(ab), then we have 

(x2+y2)(x2y2)=(x2)2(y2)2

(x2+y2)(x2y2)=x4y4


  1. (a2+b2)2

Ans: We know that (a+b)2=a2+b2+2ab, then we have

(a2+b2)2=(a2)2+(b2)2+2a2b2

(a2+b2)2=a4+b4+2a2b2


  1. (7x+5)2

Ans: We know that (a+b)2=a2+b2+2ab, then we have,

(7x+5)2=(7x)2+52+2(7x)(5)

(7x+5)2=49x2+25+70x


  1. (0.9p0.5q)2

Ans: We know that (ab)2=a2+b22ab, then we have

(0.9p0.5q)2=(0.9p)2+(0.5q)22(0.9p)(0.5q)

(0.9p0.5q)2=0.81p2+0.25q20.9pq


  1. x2y2=(xy)2

Ans: 

x2y2=x2y2

x2y2x2y2=0


86. Using suitable identities, evaluate the following.

  1. (52)2

Ans: We know that (a+b)2=a2+b2+2ab, applying this we will have,

(52)2=(50+2)2

(52)2=(50)2+(2)2+2(50)(2)

(52)2=2500+4+200

(52)2=2704


  1. (49)2

Ans: We know that (ab)2=a2+b22ab, applying this we will have,

(49)2=(501)2

(49)2=(50)2+(1)22(50)(1)

(49)2=2500+1100

(49)2=2401


  1. (103)2

Ans: We know that (a+b)2=a2+b2+2ab, applying this we will have,

(103)2=(100+3)2

(103)2=(100)2+(3)2+2(100)(3)

(103)2=10000+9+600

(103)2=10609


  1. (98)2

Ans: We know that (ab)2=a2+b22ab, applying this we will have,

(98)2=(1002)2

(98)2=(100)2+(2)22(100)(2)

(98)2=10000+4400

(98)2=9604


  1. (1005)2

Ans: We know that (a+b)2=a2+b2+2ab, applying this we will have,

(1005)2=(1000+5)2

(1005)2=(1000)2+(5)2+2(1000)(5)

(1005)2=1000000+25+10000

(1005)2=1010025


  1. (995)2

Ans: We know that (ab)2=a2+b22ab, applying this we will have,

(995)2=(10005)2

(995)2=(1000)2+(5)22(1000)(5)

(995)2=1000000+2510000

(995)2=990025


  1. 47×53

Ans: We know that a2b2=(a+b)(ab), applying this we will have,

47×53=(503)(50+3)

47×53=(50)232

47×53=25009

47×53=2491


  1. 52×53

Ans: We know that (x+a)(x+b)=x2+(a+b)x+ab, then 

52×53=(50+2)(50+3)

52×53=(50)2+(2+3)50+(2×3)

52×53=2500+(5)50+6

52×53=2500+250+6

52×53=2756


  1. 105×95

Ans: We know that a2b2=(a+b)(ab), applying this we will have,

105×95=(100+5)(1005)

105×95=(100)252

105×95=1000025

105×95=9975


  1. 104×97

Ans: We know (x+a)(xb)=x2+(ab)xab,

104×97=(100+4)(1003)

104×97=(100)2+(43)100(4×3)

104×97=10000+(1)100(12)

104×97=10000+10012

104×97=10088


  1. 101×103

Ans: We know that (x+a)(x+b)=x2+(a+b)x+ab, then 

101×103=(100+1)(100+3)

101×103=(100)2+(1+3)100+(3×1)

101×103=10000+(4)100+(3)

101×103=10000+400+3

101×103=10403


  1. 98×103

Ans: We know that (xa)(x+b)=x2+(ba)xab

98×103=(1002)(100+3)

98×103=(100)2+(32)100(3×2)

98×103=10000+(1)1006

98×103=10000+1006

98×103=10094


  1. (9.9)2

Ans: We know that (ab)2=a2+b22ab

(9.9)2=(100.1)2

(9.9)2=(10)2+(0.1)22(10)(0.1)

(9.9)2=100+0.012

(9.9)2=98.01


  1. 9.8×10.2

Ans: We know that a2b2=(a+b)(ab)

9.8×10.2=(100.2)(10+0.2)

9.8×10.2=(10)2(0.2)2

9.8×10.2=1000.04

9.8×10.2=99.96


  1. 10.1×10.2

Ans: We know that (x+a)(x+b)=x2+(a+b)x+ab,

10.1×10.2=(10+0.1)(10+0.2)

10.1×10.2=(10)2+(0.1+0.2)10+(0.1×0.2)

10.1×10.2=100+(0.3)10+(0.02)

10.1×10.2=100+3+0.02

10.1×10.2=103.02


  1. (35.4)2(14.6)2

Ans: We know that , then

(35.4)2(14.6)2=(35.4+14.6)(35.414.6)

(35.4)2(14.6)2=(50)(20.8)

(35.4)2(14.6)2=1040


  1. (69.3)2(30.7)2

a2b2=(a+b)(ab)

Ans: We know that a2b2=(a+b)(ab), then

(69.3)2(30.7)2=(69.3+30.7)(69.330.7)

(69.3)2(30.7)2=(100)(38.6)

(69.3)2(30.7)2=3860


  1. (9.7)2(0.3)2

Ans: We know that a2b2=(a+b)(ab), then

(9.7)2(0.3)2=(9.7+0.3)(9.70.3)

(9.7)2(0.3)2=(10)(9.4)

(9.7)2(0.3)2=94


  1. (132)2(68)2

Ans: We know that a2b2=(a+b)(ab), then

(132)2(68)2=(132+68)(13268)

(132)2(68)2=(200)(64)

(132)2(68)2=12800


  1. (339)2(161)2

Ans: We know that a2b2=(a+b)(ab), then

(339)2(161)2=(339+161)(339161)

(339)2(161)2=(400)(178)

(339)2(161)2=71200


  1. (729)2(271)2

Ans: We know that a2b2=(a+b)(ab), then

(729)2(271)2=(729+271)(729271)

(729)2(271)2=(1000)(458)

(729)2(271)2=458000


87. Write the greatest common factor in each of the following terms.

  1. 18a2,108a

Ans: 

18a2=1×2×3×3×a×a

108a=2×2×3×3×3×a

We can see that the greatest common factor is 2×3×3×a=18a.


  1. 3x2y,18xy2,6xy

Ans: 

3x2y=3×x×x×y

18xy2=2×3×3×x×y×y

6xy=2×3×x×y


We can see that the greatest common factor is 3×x×y=3xy.


  1. 2xy,y2,2x2y

Ans: 

2xy=2×x×y

y2=1×y×y


We can see that the greatest common factor is

seo images
.


  1. l2m2n,lm2n2,l2mn2

Ans:

l×m×n=lmn2x2y=2×x×x×y l2m2n=l×l×m×m×n

lm2n2=l×m×m×n×n

l2mn2=l×l×m×n×n


We can see that the greatest common factor is 


  1. 21pqr,7p2q2r2,49p2qr

Ans:

21pqr=3×7×p×q×r

7p2q2r2=1×7×p×p×q×q×r×r 

49p2qr=7×7×p×p×q×r


We can see that the greatest common factor is 7×p×q×r=7pqr


  1. qrxy, pryz, rxyz

Ans: As we can see that in all the three terms, the greatest common factor is ry.

  

  1. 3x3y2z,6xy3z2,12x2yz3

Ans: 

3x3y2z=3×x×x×x×y×y×z

6xy3z2=1×2×3×x×y×y×y×z×z

12x2yz3=2×2×3×x×x×y×z×z×z


We can see that the greatest common factor is 3×x×y×z=3xyz


  1. 63p2a2r2s,9pq2r2s2,15p2qr2s2,60p2a2rs2

Ans: 

63p2a2r2s=3×3×7×p×p×a×a×r×r×s

9pq2r2s2=1×3×3×p×q×q×r×r×s×s

15p2qr2s2=3×5×p×p×q×r×r×s×s

60p2a2rs2=1×2×2×3×5×p×p×a×a×r×s×s


We can see that the greatest common factor is 3×p×r×s=3prs


  1. 13x2y,169xy

Ans: 

13x2y=13×x×x×y

169xy=13×13×x×y


We can see that the greatest common factor is 13×x×y=13xy


  1. 11x2,12y2

Ans: 

11x2=11×x×x

12y2=2×2×2×y×y


We can see that the greatest common factor is 1


88. Factorise the following expressions.

  1. 6ab+12bc

Ans: 

6ab+12bc

6b(a+2c)


  1. xyay

Ans: 

xyay

y(x+a)


  1. ax3bx2+cx

Ans: 

ax3bx2+cx

x(ax2bx+c)


  1. l2m2nlm2n2l2mn2

Ans:

l2m2nlm2n2l2mn2

lmn(lmmnln)


  1. 3pqr6p2q2r215r2

Ans: 

3pqr6p2q2r215r2

3r(pq2p2q2r5r)


  1. x3y2+x2y3xy4+xy

Ans: 

x3y2+x2y3xy4+xy

xy(x2y+xy2y3+1)


  1. 4xy210x2y+16x2y2+2xy

Ans: 

4xy210x2y+16x2y2+2xy

2xy(2y5x+8xy+1)


  1. 2a33a2b+5ab2ab

Ans: 

2a33a2b+5ab2ab

a(2a23ab+5b2b)


  1. 63p2q2r2s9pq2r2s2+15p2qr2s260p2q2rs2

Ans: 

63p2q2r2s9pq2r2s2+15p2qr2s260p2q2rs2

3pqrs(21pqr3qrs+5prs20pqs)


  1. 24x2yz36xy3z2+15x2y2z5xyz

Ans: 

24x2yz36xy3z2+15x2y2z5xyz

xyz(24xz26y2z+15xy5)


  1. a3+a2+a+1

Ans: 

a3+a2+a+1

a2(a+1)+1(a+1)

(a+1)(a2+1)


  1. lx+my+mx+ly

Ans:

lx+my+mx+ly 

my+mx+ly+lx

m(x+y)+l(x+y)

(x+y)(m+l)


  1. a3xx4+a2x2ax3

Ans: 

a3xx4+a2x2ax3

a3x+a2x2x4ax3

a2x(a+x)x3(x+a)

(a+x)(a2xx3)


  1. 2x22y+4xyx

Ans: 

2x22y+4xyx

2x2x2y+4xy

x(2x1)+2y(1+2x)

x(2x1)+2y(2x1)

(2x1)(x+2y)


  1. y2+8zx2xy4yz

Ans:

y22xy+8zx4yz 

y(y2x)4z(2x+y)

y(y2x)4z(y2x)

(y2x)(y4z)


  1. ax2ybxyzax2z+bxy2

Ans: 

ax2yax2zbxyz+bxy2

ax2(yz)+bxy(z+y)

ax2(yz)+bxy(yz)

(ax2+bxy)(yz)


  1. a2b+a2c+ab+ac+b2c+c2b

Ans: 

a2b+a2c+ab+ac+b2c+c2b

a2(b+c)+a(b+c)+bc(b+c)

(b+c)(a2+a+bc)


  1. 2ax2+4axy+3bx2+2ay2+6bxy+3by2

Ans: 

2ax2+4axy+3bx2+2ay2+6bxy+3by2

2ax2+4axy+3bx2+6bxy+2ay2+3by2

2ax(x+2y)+3bx(x+2y)+2y2(2a+3b)

x(x+2y)(2a+3b)+2y2(2a+3b)

(2a+3b)[x(x+2y)+2y2]

(2a+3b)[x2+2yx+2y2]


89. Factorise the following, using the identity a2+2ab+b2=(a+b)2

  1. x2+6x+9

Ans: 

x2+6x+9=x2+2(3)(x)+32

By comparing with a2+2ab+b2=(a+b)2, we will have

x2+6x+9=(x+3)2

x2+6x+9=(x+3)(x+3)


  1. x2+12x+36

Ans: 

x2+12x+36=x2+2(6)(x)+62

By comparing with a2+2ab+b2=(a+b)2, we will have

x2+12x+36=(x+6)2

x2+12x+36=(x+6)(x+6)


  1. x2+14x+49

Ans: 

x2+14x+49=x2+2(7)(x)+72

By comparing with a2+2ab+b2=(a+b)2, we will have

x2+14x+49=(x+7)2

x2+14x+49=(x+7)(x+7)


  1. x2+2x+1

Ans:

x2+2x+1=x2+2(1)(x)+12 

By comparing with a2+2ab+b2=(a+b)2, we will have

x2+2x+1=(x+1)2


  1. 4x2+4x+1

Ans: 

4x2+4x+1=(2x)2+2(2x)(1)+12

By comparing with a2+2ab+b2=(a+b)2, we will have

4x2+4x+1=(2x+1)2

4x2+4x+1=(2x+1)(2x+1)


  1. a2x2+2ax+1

Ans: 

a2x2+2ax+12=(ax)2+2(ax)(1)+12

By comparing with a2+2ab+b2=(a+b)2, we will have

a2x2+2ax+1=(ax+1)2

a2x2+2ax+1=(ax+1)(ax+1)


  1. a2x2+2abx+b2

Ans: 

a2x2+2abx+b2=(ax)2+2(ax)(b)+b2

By comparing with a2+2ab+b2=(a+b)2, we will have

a2x2+2abx+b2=(ax+b)2

a2x2+2abx+b2=(ax+b)(ax+b)


  1. a2x2+2abxy+b2y2

Ans: 

a2x2+2abxy+b2y2=(ax)2+2(ax)(by)+(by)2

By comparing with a2+2ab+b2=(a+b)2, we will have

a2x2+2abxy+b2y2=(ax+by)2

a2x2+2abxy+b2y2=(ax+by)(ax+by)


  1. 4x2+12x+9

Ans: 

4x2+12x+9=(2x)2+2(2x)(3)+32

By comparing with a2+2ab+b2=(a+b)2, we will have

4x2+12x+9=(2x+3)2

4x2+12x+9=(2x+3)(2x+3)


  1. 16x2+40x+25

Ans: 

16x2+40x+25=(4x)2+2(4x)(5)+52

By comparing with a2+2ab+b2=(a+b)2, we will have

16x2+40x+25=(4x+5)2

16x2+40x+25=(4x+5)(4x+5)


  1. 9x2+24x+16

Ans: 

9x2+24x+16=(3x)2+2(3x)(4)+42

By comparing with a2+2ab+b2=(a+b)2, we will have

9x2+24x+16=(3x+4)2

9x2+24x+16=(3x+4)(3x+4)


  1. 9x2+30x+25

Ans:

9x2+30x+25=(3x)2+2(3x)(5)+52 

By comparing with a2+2ab+b2=(a+b)2, we will have

9x2+30x+25=(3x+5)2

9x2+30x+25=(3x+5)(3x+5)


  1. 2x3+24x2+72x

Ans: 

2x3+24x2+72x=2x(x2+12x+36)

2x3+24x2+72x=2x(x2+2(x)(6)+62)

By comparing with a2+2ab+b2=(a+b)2, we will have

2x3+24x2+72x=2x(x+6)2

2x3+24x2+72x=2x(x+6)(x+6)


  1. a2x3+2abx2+b2x

Ans:

a2x3+2abx2+b2x=x(a2x2+2abx+b2)

a2x3+2abx2+b2x=x((ax)2+2(ax)(b)+b2)

By comparing with a2+2ab+b2=(a+b)2, we will have

a2x3+2abx2+b2x=x(ax+b)2

a2x3+2abx2+b2x=x(ax+b)(ax+b)


  1. 4x4+12x3+9x2

Ans: 

4x4+12x3+9x2=x2(4x2+12x+9)

4x4+12x3+9x2=x2((2x)2+2(2x)(3)+32)

By comparing with a2+2ab+b2=(a+b)2, we will have

4x4+12x3+9x2=x2(2x+3)2

4x4+12x3+9x2=x2(2x+3)(2x+3)


  1. x24+2x+4

Ans: 

x24+2x+4=(x2)2+2(x2)(2)+22

By comparing with a2+2ab+b2=(a+b)2, we will have

x24+2x+4=(x2+2)2

x24+2x+4=(x2+2)(x2+2)


  1. 9x2+2xy+y29

Ans: 

9x2+2xy+y29=(3x)2+2(y3)(3x)+(y3)2

By comparing with a2+2ab+b2=(a+b)2, we will have

9x2+2xy+y29=(3x+y3)2

9x2+2xy+y29=(3x+y3)(3x+y3)


90. Factorise the following, using the identity a22ab+b2=(ab)2.

  1. x28x+16

Ans: 

x28x+16=x22(x)(4)+42

By comparing with a22ab+b2=(ab)2, we will have

x28x+16=(x4)2

x28x+16=(x4)(x4)


  1. x210x+25

Ans:

x210x+25=x22(x)(5)+52

By comparing with a22ab+b2=(ab)2, we will have

x210x+25=(x5)2

x210x+25=(x5)(x5) 


  1. y214y+49

Ans: 

y214y+49=y22(7)(y)+72

By comparing with a22ab+b2=(ab)2, we will have

y214y+49=(y7)2 

y214y+49=(y7)(y7)


  1. p22p+1

Ans: 

p22p+1=p22(p)(1)+12

By comparing with a22ab+b2=(ab)2, we will have

p22p+1=(p1)2 

p22p+1=(p1)(p1)


  1. 4a24ab+b2

Ans: 

4a24ab+b2=(2a)22(2a)(b)+b2

By comparing with a22ab+b2=(ab)2, we will have

4a24ab+b2=(2ab)2 

4a24ab+b2=(2ab)(2ab)


  1. p2y22py+1

Ans: 

p2y22py+1=(py)22(py)(1)+12

By comparing with a22ab+b2=(ab)2, we will have

p2y22py+1=(py1)2 

p2y22py+1=(py1)(py1)


  1. a2y22aby+b2

Ans: 

a2y22aby+b2=(ay)22(ay)(b)+b2

By comparing with a22ab+b2=(ab)2, we will have

a2y22aby+b2=(ayb)2 

a2y22aby+b2=(ayb)(ayb)


  1. 9x212x+4

Ans:

9x212x+4=(3x)22(3x)(2)+22

By comparing with a22ab+b2=(ab)2, we will have

9x212x+4=(3x2)2 

9x212x+4=(3x2)(3x2)

 

  1. 4y212y+9

Ans: 

4y212y+9=(2y)22(2y)(3)+32

By comparing with a22ab+b2=(ab)2, we will have

4y212y+9=(2y3)2 

4y212y+9=(2y3)(2y3)


  1. x242x+4

Ans: 

x242x+4=(x2)22(x2)(2)+22

By comparing with a22ab+b2=(ab)2, we will have

x242x+4=(x22)2 

x242x+4=(x22)(x22)


  1. a2y32aby2+b2y

Ans: 

a2y32aby2+b2y=y(a2y22aby+b2)a2y32aby2+b2y=y((ay)22(ay)(b)+b2)

By comparing with a22ab+b2=(ab)2, we will have

a2y32aby2+b2y=y(ayb)2 

a2y32aby2+b2y=y(ayb)(ayb)


  1. 9y24xy+4x29

Ans:

9y24xy+4x29=(3y)22(2x3)(3y)+(2x3)2

By comparing with a22ab+b2=(ab)2, we will have

9y24xy+4x29=(3y2x3)2 

9y24xy+4x29=(3y2x3)(3y2x3)


91. Factorise the following.

  1. x2+15x+26

Ans:

x2+15x+26=x2+13x+2x+26

x2+15x+26=x(x+13)+2(x+13)

x2+15x+26=(x+13)(x+2)


  1. x2+9x+20

Ans:

x2+9x+20=x2+4x+5x+20

x2+9x+20=x(x+4)+5(x+4)

x2+9x+20=(x+4)(x+5)


  1. y2+18x+65

Ans:

y2+18y+65=y2+5y+13y+65

y2+18y+65=y(y+5)+13(y+5)

y2+18y+65=(y+5)(y+13)


  1. p2+14p+13

Ans:

p2+14p+13=p2+13p+1p+13

p2+14p+13=p(p+13)+1(p+13)

p2+14p+13=(p+13)(p+1)


  1. y2+4y21

Ans:

y2+4y21=y2+7y3y21

y2+4y21=y(y+7)3(y+7)

y2+4y21=(y+7)(y3)


  1. y22y15

Ans:

y22y15=y25y+3y15

y22y15=y(y5)+3(y5)

y22y15=(y5)(y+3)


  1. 18+11x+x2

Ans:

18+11x+x2=x2+11x+18

18+11x+x2=x2+9x+2x+18

18+11x+x2=x(x+9)+2(x+9)

18+11x+x2=(x+9)(x+2)


  1. x210x+21

Ans:

x210x+21=x27x3x+21

x210x+21=x(x7)3(x7)

x210x+21=(x7)(x3)


  1. x2=17x+60

Ans:

x217x60=x220x+3x60

x217x60=x(x20)+3(x20)

x217x60=(x20)(x+3)


  1. x2+4x77

Ans:

x2+4x77=x2+11x7x77

x2+4x77=x(x+11)7(x+11)

x2+4x77=(x+11)(x7)


  1. y2+7y+12

Ans:

y2+7y+12=y2+3y+4y+12

y2+7y+12=y(y+3)+4(y+3)

y2+7y+12=(y+3)(y+4)


  1. p213p30

Ans:

p213p30=p215p+2p30

p213p30=p(p15)+2(p15)

p213p30=(p15)(p+2)


  1. a216p80

Ans:

a216p80=a216(p+5)

As we can see that we cannot factor further. 


92. Factorise the following using the identity a2b2=(a+b)(ab).

  1. x29

Ans:

x29=x232

By comparing it with a2b2=(a+b)(ab) we have,

x29=(x+3)(x3)


  1. 4x225y2

Ans:

4x225y2=(2x)2(5y)2

By comparing it with a2b2=(a+b)(ab) we have,

4x225y2=(2x+5y)(2x5y)


  1. 4x249y2

Ans:

4x249y2=(2x)2(7y)2

By comparing it with a2b2=(a+b)(ab) we have,

4x249y2=(2x+7y)(2x7y)


  1. 3a2b327a4b

Ans:

3a2b327a4b=3a2b(b29a2)

3a2b327a4b=3a2b(b2(3a)2)

By comparing it with a2b2=(a+b)(ab) we have,

3a2b327a4b=3a2b(b+3a)(b3a)


  1. 28ay2175ax2

Ans:

28ay2175ax2=7a(4y225x2)

28ay2175ax2=7a((2y)2(5x)2)

By comparing it with a2b2=(a+b)(ab) we have,

28ay2175ax2=7a(2y+5x)(2y5x)


  1. 9x21

Ans:

9x21=(3x)212

By comparing it with a2b2=(a+b)(ab) we have,

9x21=(3x+1)(3x1)


  1. 25ax225a

Ans:

25ax225a=a(25x225)

25ax225a=a((5x)252)

By comparing it with a2b2=(a+b)(ab) we have,

25ax225a=a(5x+5)(5x5)


  1. x29y225

Ans:

x29y225=(x3)2(y5)2

By comparing it with a2b2=(a+b)(ab) we have,

x29y225=(x3+y5)(x3y5)


  1. 2p22532q2

Ans:

2p22532q2=2(p22516q2)

2p22532q2=2((p5)2(4q)2)

By comparing it with a2b2=(a+b)(ab) we have,

2p22532q2=2(p5+4q)(p54q)


  1. 49x236y2

Ans:

49x236y2=(7x)2(6y)2

By comparing it with a2b2=(a+b)(ab) we have,

49x236y2=(7x+6y)(7x6y)


  1. y3y9

Ans:

y3y9=y(y219)

y3y9=y(y2(13)2)

By comparing it with a2b2=(a+b)(ab) we have,

y3y9=y(y+13)(y13)


  1. x225625

Ans:

x225625=(x5)2(25)2

By comparing it with a2b2=(a+b)(ab) we have,

x225625=(x5+25)(x525)


  1. x28y218

Ans:

x28y218=12(x24y29)

x28y218=12((x2)2(y3)2)

By comparing it with a2b2=(a+b)(ab) we have,

x28y218=12(x2+y3)(x2y3)


  1. 4x299y216

Ans:

4x299y216=(2x3)2(3y4)2

By comparing it with a2b2=(a+b)(ab) we have,

4x299y216=(2x3+3y4)(2x33y4)


  1. x3y9xy316

Ans:

x3y9xy316=xy(x29y216)

x3y9xy316=xy((x3)2(y4)2)

By comparing it with a2b2=(a+b)(ab) we have,

x3y9xy316=xy(x3+y4)(x3y4)


  1. 1331x3y11y3x

Ans:

1331x3y11y3x=11xy(121x2y2)

1331x3y11y3x=11xy((11x)2y2)

By comparing it with a2b2=(a+b)(ab) we have,

1331x3y11y3x=11xy(11x+y)(11xy)


  1. 136a2b21649b2c2

Ans:

136a2b21649b2c2=(16ab)2(47bc)2

By comparing it with a2b2=(a+b)(ab) we have,

136a2b21649b2c2=(16ab+47bc)(16ab47bc)


  1. a4(ab)4

Ans:

a4(ab)4=(a2)2((ab)2)2

By comparing it with a2b2=(a+b)(ab) we have,

a4(ab)4=(a2+(ab)2)(a2(ab)2)

a4(ab)4=(a2+a2+b22ab)(a2a2b2+2ab)

a4(ab)4=(2a2+b22ab)(b2+2ab)


  1. x41

Ans:

x41=(x2)212

By comparing it with a2b2=(a+b)(ab) we have,

x41=(x2+1)(x21)


  1. y4625

Ans:

y4625=(y2)2(25)2

By comparing it with a2b2=(a+b)(ab) we have,

y4625=(y2+25)(y225)


  1. p516p

Ans:

p516p=p(p416)

p516p=p((p2)242)

By comparing it with a2b2=(a+b)(ab) we have,

p516p=p(p2+4)(p24)


  1. 16x481

Ans:

16x481=(4x2)292

By comparing it with a2b2=(a+b)(ab) we have,

16x481=(4x2+9)(4x29)


  1. x4y4

Ans:

x4y4=(x2)2(y2)2

By comparing it with a2b2=(a+b)(ab) we have,

x4y4=(x2+y2)(x2y2)


  1. y481

Ans:

y481=(y2)292

By comparing it with a2b2=(a+b)(ab) we have,

y481=(y2+9)(y29)


  1. 16x4625y4

Ans:

16x4625y4=(4x2)2(25y2)2

By comparing it with a2b2=(a+b)(ab) we have,

16x4625y4=(4x2+25y2)(4x225y2)


  1. (ab)2(bc)2

Ans:

(ab)2(bc)2

By comparing it with a2b2=(a+b)(ab) we have,

(ab)2(bc)2=(ab+(bc))(ab(bc))

(ab)2(bc)2=(ab+bc)(abb+c)

(ab)2(bc)2=(ac)(a2b+c)


  1. (x+y)4(xy)4

Ans:

(x+y)4(xy)4=((x+y)2)2((xy)2)2

By comparing it with a2b2=(a+b)(ab) we have,

(x+y)4(xy)4=((x+y)2+(xy)2)((x+y)2(xy)2)

(x+y)4(xy)4=(2x2+2y2)(4xy)


  1. x4y4+x2y2

Ans:

x4y4+x2y2=(x4y4)+(x2y2)

x4y4+x2y2=((x2)2(y2)2)+(x2y2)

By comparing it with a2b2=(a+b)(ab) we have,

x4y4+x2y2=[(x2+y2)(x2y2)]+[(x+y)(xy)]

x4y4+x2y2=[(x2+y2)(x+y)(xy)]+[(x+y)(xy)]

x4y4+x2y2=(x+y)(xy)[(x2+y2)+1]

x4y4+x2y2=(x+y)(xy)[x2+y2+1]


  1. 8a32a

Ans:

8a32a=2a(4a21)

8a32a=2a((2a)212)

By comparing it with a2b2=(a+b)(ab) we have,

8a32a=2a(2a+1)(2a1)


  1. x2y2100

Ans:

x2y2100=x2(y10)2

By comparing it with a2b2=(a+b)(ab) we have,

x2y2100=(x+y10)(xy10)


  1. 9x2(3y+z)2

Ans:

9x2(3y+z)2=(3x)2(3y+z)2

By comparing it with a2b2=(a+b)(ab) we have,

9x2(3y+z)2=(3x+(3y+z))(3x(3y+z))

9x2(3y+z)2=(3x+3y+z)(3x3yz)


93. The following expressions are the areas of rectangles. Find the possible lengths and breadths of these rectangles.

  1. x26x+8

Ans: We know that Area of a rectangle = length × breadth.


x26x+8=x24x2x+8

x26x+8=x(x4)2(x4)

x26x+8=(x4)(x2)


Thus, we have expressed area as a multiple of length and breadth.


Hence, length and breadth is (x4) and (x2).


  1. x23x+2

Ans: We know that Area of a rectangle = length × breadth.


x23x+2=x22xx+2

x23x+2=x(x2)1(x2)

x23x+2=(x2)(x1)


Thus, we have expressed area as a multiple of length and breadth.


Hence, length and breadth is (x2) and (x1).


  1. x27x+10

Ans: We know that Area of a rectangle = length × breadth.


x27x+10=x25x2x+10

x27x+10=x(x5)2(x5)

x27x+10=(x5)(x2)


Thus, we have expressed area as a multiple of length and breadth.


Hence, length and breadth is (x5) and (x2).


  1. x2+19x20

Ans: We know that Area of a rectangle = length × breadth.


x2+19x20=x2+20xx20

x2+19x20=x(x+20)1(x+20)

x2+19x20=(x+20)(x1)


Thus, we have expressed area as a multiple of length and breadth.


Hence, length and breadth is (x+20) and (x1).


  1. x2+9x+20

Ans: We know that Area of a rectangle = length × breadth.


x2+9x+20=x2+5x+4x+20

x2+9x+20=x(x+5)+4(x+5)

x2+9x+20=(x+5)(x+4)


Thus, we have expressed area as a multiple of length and breadth.


Hence, length and breadth is (x+5) and (x+4)


94. Carry out the following divisions:

  1. 51x3y2z÷17xyz

Ans: 

51x3y2z÷17xyz=51x3y2z17xyz

51x3y2z÷17xyz=3x2y


  1. 76x3yz3÷19x2y2

Ans: 

76x3yz3÷19x2y2=76x3yz319x2y2

76x3yz3÷19x2y2=4xz3y


  1. 17ab2c3÷(abc2)

Ans: 

17ab2c3÷(abc2)=17ab2c3abc2

17ab2c3÷(abc2)=17bc


  1. 121p3q3r3÷(11xy2z3)

Ans:

121p3q3r3÷(11xy2z3)=121p3q3r311xy2z3 

121p3q3r3÷(11xy2z3)=11p3q3r3xy2z3


95. Perform the following divisions:

  1. (3pqr6p2q2r2)÷3pq

Ans:

(3pqr6p2q2r2)÷3pq=3pqr6p2q2r23pq

(3pqr6p2q2r2)÷3pq=3pqr3pq6p2q2r23pq

(3pqr6p2q2r2)÷3pq=r2pqr2


  1. (ax3bx2+cx)÷(dx)

Ans:

(ax3bx2+cx)÷(dx)=ax3bx2+cxdx

(ax3bx2+cx)÷(dx)=x(ax2bx+c)dx

(ax3bx2+cx)÷(dx)=(ax2bx+c)d


  1. (x3y3+x2y3xy4+xy)÷xy

Ans:

(x3y3+x2y3xy4+xy)÷xy=x3y3+x2y3xy4+xyxy

(x3y3+x2y3xy4+xy)÷xy=xy(x2y2+xy2y3+1)xy

(x3y3+x2y3xy4+xy)÷xy=(x2y2+xy2y3+1)


  1. (qrxy+pryzrxyz)÷(xyz)

Ans:

(qrxy+pryzrxyz)÷(xyz)=qrxy+pryzrxyzxyz

(qrxy+pryzrxyz)÷(xyz)=y(qrx+przrxz)xyz

(qrxy+pryzrxyz)÷(xyz)=qrx+przrxzxz


96. Factorise the expressions and divide them as directed:

  1. (x222x+117)÷(x13)

Ans:

(x222x+117)÷(x13)=x222x+117x13

(x222x+117)÷(x13)=x29x13x+117x13

(x222x+117)÷(x13)=x(x9)13(x9)x13

(x222x+117)÷(x13)=(x9)(x13)x13

(x222x+117)÷(x13)=(x9)


  1. (x3+x2132x)÷x(x11)

Ans:

(x3+x2132x)÷x(x11)=x3+x2132xx(x11)

(x3+x2132x)÷x(x11)=x(x2+x132)x(x11)

(x3+x2132x)÷x(x11)=x2+12x11x132(x11)

(x3+x2132x)÷x(x11)=x(x+12)11(x+12)(x11)

(x3+x2132x)÷x(x11)=(x+12)(x11)(x11)

(x3+x2132x)÷x(x11)=(x+12)



  1. (2x312x2+16x)÷(x2)(x4)

Ans:

(2x312x2+16x)÷(x2)(x4)=2x312x2+16x(x2)(x4)

(2x312x2+16x)÷(x2)(x4)=2x(x26x+8)(x2)(x4)

(2x312x2+16x)÷(x2)(x4)=2x(x22x4x+8)(x2)(x4)

(2x312x2+16x)÷(x2)(x4)=2x(x(x2)4(x2))(x2)(x4)

(2x312x2+16x)÷(x2)(x4)=2x(x4)(x2)(x2)(x4)

(2x312x2+16x)÷(x2)(x4)=2x


  1. (9x24)÷(3x+2)

Ans:

(9x24)÷(3x+2)=9x243x+2

(9x24)÷(3x+2)=(3x)2223x+2

(9x24)÷(3x+2)=(3x+2)(3x2)3x+2

(9x24)÷(3x+2)=(3x2)


  1. (3x248)÷(x4)

Ans:

(3x248)÷(x4)=3x248x4

(3x248)÷(x4)=3(x216)x4

(3x248)÷(x4)=3(x242)x4

(3x248)÷(x4)=3(x+4)(x4)x4

(3x248)÷(x4)=3(x+4)


  1. (x416)÷x3+2x2+4x+8

Ans:

(x416)÷x3+2x2+4x+8=x416x3+2x2+4x+8

(x416)÷x3+2x2+4x+8=(x2)242x2(x+2)+4(x+2)

(x416)÷x3+2x2+4x+8=(x2+4)(x24)(x+2)(x2+4)

(x416)÷x3+2x2+4x+8=(x24)(x+2)

(x416)÷x3+2x2+4x+8=(x222)(x+2)

(x416)÷x3+2x2+4x+8=(x+2)(x2)(x+2)

(x416)÷x3+2x2+4x+8=(x2)


  1. (3x41875)÷(3x275)

Ans:

(3x41875)÷(3x275)=3x418753x275

(3x41875)÷(3x275)=3(x4625)3(x225)

(3x41875)÷(3x275)=3((x2)2252)3(x225)

(3x41875)÷(3x275)=3(x2+25)(x225)3(x225)

(3x41875)÷(3x275)=3(x2+25)


97. The area of a square is given by 4x2+12xy+9y2. Find the side of the square.

Ans: We know that the area of the square = (Side)2


Now 

4x2+12xy+9y2=(2x)2+2(2x)(3y)+(3y)2

4x2+12xy+9y2=(2x+3y)2


That is Area of the square is (2x+3y)


98. The area of a square is 9x2+24xy+16y2. Find the side of the square.

Ans: We know that the area of the square = (Side)2


Now, 

9x2+24xy+16y2=(3x)2+2(3x)(4y)+(4y)2

9x2+24xy+16y2=(3x+4y)2


That is Area of the square is (3x+4y)


99. The area of a rectangle is x2+7x+12. If its breadth is (x+3), then find its length.

Ans: We know that the area of rectangle is the product of its length and breadth.


A=Length×Breadth

x2+7x+12=Length×(x+3)

Length=x2+7x+12(x+3)

Length=x2+3x+4x+12(x+3)

Length=x(x+3)+4(x+3)(x+3)

Length=(x+3)(x+4)(x+3)

Length=(x+4)


100. The curved surface area of a cylinder is 2π(y27y+12) and its radius is (y3). Find the height of the cylinder (C.S.A. of cylinder = 2πrh).

Ans:

Given C.S.A. of cylinder = 2πrh, Where h is height and r is the radius.


Then,

2π(y27y+12)=2π(y3)h

h=2π(y27y+12)2π(y3)

h=2π(y23y4y+12)2π(y3)

h=2π(y(y3)4(y4))2π(y3)

h=2π((y3)(y4))2π(y3)

h=(y4)


101. The area of a circle is given by the expression πx2+6πx+9π. Find the radius of the circle.

Ans: We know that the area of the circle is πr2, where r is the radius.


Then,

πx2+6πx+9π=πr2

π(x2+6x+9)=πr2

r2=(x2+6x+9)

r2=(x2+2(x)(3)+32)

r2=(x+3)2

r=(x+3)


102. The sum of the first n natural numbers is given by the expression n22+n2. Factorise this expression.

Ans: Given,

The sum of first n natural number is n22+n2.

n22+n2=12(n2+n)

n22+n2=n2(n+1)


103. The sum of (x+5) observations is x4625. Find the mean of the observations.

Ans: We know that

Mean=Sum of observationnumber of observation

Mean=x4625(x+5)

Mean=(x2)2(25)2(x+5)

Mean=(x2+25)(x225)(x+5)

Mean=(x2+25)(x252)(x+5)

Mean=(x2+25)(x+5)(x5)(x+5)

Mean=(x2+25)(x5)


104. The height of a triangle is x4+y4 and its base is 14xy. Find the area of the triangle.

Ans: We know that the area of triangle,

A=12×height×base

A=12×(x4+y4)×(14xy)

A=7xy(x4+y4)


105. The cost of a chocolate is Rs (x+y) and Rohit bought (x+y) chocolates. Find the total amount paid by him in terms of x. If x = 10, find the amount paid by him.

Ans:

The cost of chocolate is Rs (x+y).


Rohit bought (x+y) chocolates.


The total amount paid by him will be,

(x+y)×(x+y)

(x+y)2


If x = 10 then,

(10+y)2


106. The base of a parallelogram is (2x+3 units) and the corresponding height is ( 2x-3 units). Find the area of the parallelogram in terms of x. What will be the area of the parallelogram of x = 30 units?

Ans: 

We know that the area of parallelogram is 


A=Base×Height

A=(2x+3)×(2x3)

A=(2x)2(3)2

A=4x29


Here, x = 30,

A=4(30)29

A=4(900)9

A=36009

A=3591


Area is 3591 square units.


107. The radius of a circle is 7ab7bc14ac. Find the circumference of the circle. (π=227)

Ans:

The circumference of the circle is 


C=2π(7ab7bc14ac)

C=2×227(7ab7bc14ac)

C=2×227×7(abbc2ac)

C=2×22(abbc2ac)

C=44(abbc2ac)


108. If p+q=12 and pq=22, then find p2+q2.

Ans: Given,

p+q=12(1) and pq=22(2).

Squaring on both sides on the equation (1)


(p+q)2=(12)2

Using the identity (a+b)2=a2+b2+2ab,

p2+q2+2pq=(12)2

p2+q2=(12)22pq


Using equation 2 we have

p2+q2=(12)22(22)

p2+q2=14444

p2+q2=100


109. If a+b=25 and a2+b2=225, then find ab.

Ans: Given a+b=25(1) and a2+b2=225(2)


Squaring Equation 1 on both sides we have,

(a+b)2=(25)2

a2+b2+2ab=625


Using equation 2 we have,

225+2ab=625

2ab=625225

2ab=400

ab=4002

ab=200


110. If xy=13 and xy=28, then find x2+y2.

Ans: Given, xy=13(1) and xy=28(2)


Squaring Equation 1 on both sides we have,

(xy)2=(13)2

x2+y22xy=(13)2

x2+y22xy=169


Using equation 2 we will have

x2+y22(28)=169

x2+y256=169

x2+y2=169+56

x2+y2=225


111. If mn=16 and m2+n2=400, then find mn.

Ans: Given mn=16(1) and m2+n2=400(2) then


Squaring Equation 1 on both sides we have,

(mn)2=(16)2

m2+n22mn=(16)2


Using equation 2 we will have

4002mn=256

2mn=256400

2mn=144

mn=1442

mn=72


112. If a2+b2=74 and ab=35, then find a+b.

Ans: Given a2+b2=74(1) and ab=35(2).


We know that 

(a+b)2=a2+b2+2ab


Using equation 1 and using equation 2 we will have,

(a+b)2=74+2(35)

(a+b)2=74+70

(a+b)2=144

(a+b)=±144

a+b=±12.


113. Verify the following:

(i) (ab+bc)(abbc)+(bc+ca)(bcca)+(ca+ab)(caab)=0

Ans:

(ab+bc)(abbc)+(bc+ca)(bcca)+(ca+ab)(caab)=0


Now we know the identity (a+b)(ab)=a2b2, applying this we will have 

(ab)2(bc)2+(bc)2(ca)2+(ca)2(ab)2=0

a2b2b2c2+b2c2c2a2+c2a2a2b2=0


Grouping the like terms,

a2b2a2b2b2c2+b2c2c2a2+c2a2=0

0=0


Hence, proved.


(ii) (a+b+c)(a2+b2+c2abbcca)=a3+b3+c33abc

Ans: (a+b+c)(a2+b2+c2abbcca)=a3+b3+c33abc


Now, LHS=(a+b+c)(a2+b2+c2abbcca) and RHS=a3+b3+c33abc.


Take LHS.

LHS=(a+b+c)(a2+b2+c2abbcca)

$\begin{align}

  & \Rightarrow LHS=a\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)+b\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right) \\ 

 & +c\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right) \\ 

\end{align}$

\[\begin{align}

  & LHS={{a}^{3}}+a{{b}^{2}}+a{{c}^{2}}-{{a}^{2}}b-abc-c{{a}^{2}}+{{a}^{2}}b+{{b}^{2}}+b{{c}^{2}}-a{{b}^{2}}-{{b}^{2}}c-bca \\ 

 & +{{a}^{2}}c+{{b}^{2}}c+{{c}^{3}}-abc-b{{c}^{2}}-{{c}^{2}}a \\ 

\end{align}\]

Grouping like terms,

\[\begin{align}

  & LHS={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+a{{b}^{2}}-a{{b}^{2}}+a{{c}^{2}}-{{c}^{2}}a-{{a}^{2}}b+{{a}^{2}}b-c{{a}^{2}}+{{a}^{2}}c \\ 

 & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+b{{c}^{2}}-b{{c}^{2}}-{{b}^{2}}c+{{b}^{2}}c-abc-abc-bca \\ 

\end{align}\] 

LHS=a3+b3+c33abc

That is 

LHS=RHS


Hence, proved.


(iii) (pq)(p2+pq+q2)=p3q3

Ans: (pq)(p2+pq+q2)=p3q3


LHS=(pq)(p2+pq+q2) and RHS=p3q3

Now take LHS,

LHS=p(p2+pq+q2)q(p2+pq+q2)

LHS=(p3+p2q+pq2)(qp2+pq2+q3)


LHS=p3+p2q+pq2qp2pq2q3

LHS=p3+p2qqp2+pq2pq2q3

LHS=p3q3

LHS=RHS


Hence, proved.


(iv) (m+n)(m2mn+n2)=m3+n3

Ans: (m+n)(m2mn+n2)=m3+n3


LHS=(m+n)(m2mn+n2) and RHS=m3+n3

Now take LHS,

LHS=m(m2mn+n2)+n(m2mn+n2)

LHS=(m3m2n+mn2)+(nm2mn2+n3)


LHS=m3m2n+mn2+nm2mn2+n3

LHS=m3+nm2m2n+mn2mn2+n3

LHS=m3+n3

LHS=RHS


Hence, proved.


(v) (a+b)(a+b)(a+b)=a3+3a2b+3ab2+b3

Ans: (a+b)(a+b)(a+b)=a3+3a2b+3ab2+b3


LHS=(a+b)(a+b)(a+b) and RHS=a3+3a2b+3ab2+b3.

Now take,

LHS=(a+b)(a+b)(a+b)

LHS=(a+b)2(a+b)

LHS=(a2+b2+2ab)(a+b)

LHS=a(a2+b2+2ab)+b(a2+b2+2ab)

LHS=a3+ab2+2a2b+a2b+b3+2ab2


Grouping like terms,

LHS=a3+b3+2ab2+ab2+2a2b+a2b

LHS=a3+3ab2+3a2b+b3

LHS=RHS


Hence, proved.


(vi) (ab)(ab)(ab)=a33a2b+3ab2b3

Ans: Given,

LHS=(ab)(ab)(ab) and RHS=a33a2b+3ab2b3.


Take LHS,

LHS=(ab)(ab)(ab)

LHS=(ab)(ab)2

LHS=(ab)(a2+b22ab)

LHS=a(a2+b22ab)b(a2+b22ab)

LHS=(a3+ab22a2b)(a2b+b32ab2)

LHS=a3+ab22a2ba2bb3+2ab2

Grouping like terms,

LHS=a3b3+3ab23a2b

LHS=RHS


Hence, proved.


(vii) (a2b2)(a2+b2)+(b2c2)(b2+c2)+(c2a2)(c2+a2)=0

Ans:

(a2b2)(a2+b2)+(b2c2)(b2+c2)+(c2a2)(c2+a2)=0


Now we know the identity (a+b)(ab)=a2b2, applying this we will have 

(a2)2(b2)2+(b2)2(c2)2+(c2)2(a2)2=0


a4b4+b4c4+c4a4=0

a4a4b4+b4c4+c4=0

0=0


Hence, proved.


(viii) (5x+8)2160x=(5x8)2

Ans:

LHS=(5x+8)2160x and RHS=(5x8)2


Take LHS,

LHS=(5x)2+82+2(5x)(8)160x


LHS=25x2+64+80x160x

LHS=25x2+6480x

LHS=(5x)2+822(5x)(8)

It is of the form (ab)2=a2+b22ab

LHS=(5x8)2

LHS=RHS


Hence, proved.


(ix) (7p13q)2+364pq=(7p+13q)2

Ans:

LHS=(7p13q)2+364pq and RHS=(7p+13q)2.


Now taking LHS,

LHS=(7p13q)2+364pq

LHS=(7p)2+(13q)22(7p)(13q)+364pq

LHS=49p2+169q2182pq+364pq

LHS=49p2+169q2+182pq

LHS=(7p)2+(13q)2+2(7p)(13q)

LHS=(7p+13q)2

LHS=RHS


Hence proved.


(x) (3p7+76p)2(37p76p)2=2

Ans:

(3p7+76p)2(37p76p)2=2


It is of the form a2b2=(a+b)(ab)

(3p7+76p+37p76p)(3p7+76p37p+76p)=2

(3p7+37p)(76p+76p)=2

(6p7)(146p)=2

6p×147×6p=2

147=2

2=2


Hence, proved.


114. Find the value of a, if

(i) 8a=352272

Ans:

We know that a2b2=(a+b)(ab), then

8a=(35+27)(3527)

8a=62×8

a=62×88

a=62


(ii) 9a=762672

Ans:

We know that a2b2=(a+b)(ab), then

9a=762672

9a=(7667)(76+67)

9a=9×143

a=9×1439

a=143


(iii) pqa=(3p+q)2(3pq)2

Ans:

We know that a2b2=(a+b)(ab), then

pqa=(3p+q+3pq)(3p+q3p+q)

pqa=(3p+3p)(q+q)

pqa=(6p)(2q)

pqa=12pq

a=12


(iv) pq2a=(4pq+3q)2(4pq3q)2

Ans:

We know that a2b2=(a+b)(ab), then

pq2a=(4pq+3q+4pq3q)(4pq+3q4pq+3q)

pq2a=(4pq+4pq)(3q+3q)

pq2a=(8pq)(6q)

pq2a=48pq2

a=48


115. What should be added to 4c(a+b+c) to obtain 3a(a+b+c)2b(ab+c)  ?

Ans: Let M be added to 4c(a+b+c) to obtain 3a(a+b+c)2b(ab+c).

M+4c(a+b+c)=3a(a+b+c)2b(ab+c)

M4ac+4bc+4c2=3a2+3ab+3ac2ab+2b22bc

M=3a2+3ab+3ac2ab+2b22bc+4ac4bc4c2

M=3a2+2b24c2+3ab2ab+3ac+4ac2bc4bc

M=3a2+2b24c2+ab+7ac6bc


116. Subtract b(b2+b7)+5 from 3b28 and find the value of expression obtained for b=3.

Ans:

3b28(b(b2+b7)+5)

3b28(b3+b27b+5)

3b28b3b2+7b5

2b2b3+7b13


Now, put b=3


Then 

2(3)2(3)3+7(3)13

2(9)(27)+7(3)13

18+272113

11


117. If x1x=7 then find the value of x2+1x2.

Ans: Given,

x1x=7


Squaring on both sides,

(x1x)2=72

x2+1x22=49

x2+1x2=49+2

x2+1x2=51


118. Factorise x2+1x2+23x3x.

Ans: Given

x2+1x2+23x3x=x2+1x2+23(x1x)


If we compare the first three terms with the (a+b)2=a2+b2+2ab, we will have’

x2+1x2+23x3x=(x+1x)23(x1x)

Taking (x1x) common we will have

x2+1x2+23x3x=(x1x)(x+1x3)


119. Factorise p4+q4+p2q2.

Ans: Given, p4+q4+p2q2.


(p2)2+(q2)2+2p2q2p2q2

(p2+q2)2(pq)2

(p2+q2+pq)(p2+q2pq)


120. Find the value of

(i) 6.25×6.251.75×1.754.5

Ans:

6.25×6.251.75×1.754.5


(6.25)2(1.75)24.5

Applying the a2b2=(a+b)(ab)

(6.25+1.75)(6.251.75)4.5

(8)×(4.5)4.5

8

(ii) 198×198102×10296


Ans: Given

198×198102×10296


(198)2(102)296

Applying the a2b2=(a+b)(ab)

(198+102)(198102)96

(300)(96)96

300


121. The product of two expressions is x5+x3+x. If one of them is x2+x+1 , find the other.

Ans: Let the unknown expression be Y.


Then by the given condition we will have,

y×(x2+x+1)=x5+x3+x

y=x5+x3+xx2+x+1


Then using the long division method, 

\[\begin{align}

  & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{3}}-{{x}^{2}}+x \\ 

 & {{x}^{2}}+x+1\left| \!{\overline {\, 

 \begin{align}

  & {{x}^{5}}+{{x}^{3}}+x \\ 

 & \underline{{{x}^{5}}+{{x}^{4}}+{{x}^{3}}} \\ 

 & \,\,\,\,\,\,\,\,\,\,\,-{{x}^{4}}+x \\ 

 & \underline{\,\,\,\,\,\,\,\,\,\,\,\,-{{x}^{4}}-{{x}^{3}}-{{x}^{2}}} \\ 

 & \,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{3}}+{{x}^{2}}+x \\ 

 & \underline{\,\,\,\,\,\,\,\,\,\,\,\,\,{{x}^{3}}+{{x}^{2}}+x} \\ 

 & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\ 

\end{align} \,}} \right.  \\ 

\end{align}\]


Hence the unknown algebraic expression is x3x2+x.


122. Find the length of the side of the given square if area of the square is 625 square units and then find the value of x.

seo images


Ans:

We have 7a square. That is all sides are equal.

We know that the area of the square is side2 

That is,

(4x+5)2=625

(4x+5)2=(25)2

4x+5=25

4x=255

4x=20

x=5


Hence, side is

4x+5=4(5)+5=20+5=25units.


123. Take suitable number of cards given in the adjoining diagram [G (x× x ) representing x2,R(x×1) representing x and Y(1×1) representing 1] to factorise the following expressions, by arranging the cards in the form of rectangles: (i) 2x2+6x+4 (ii) x2+4x+4. Factorise 2x2+ 6x+4 by using the figure.

seo images


seo images


Calculate the area of the  figure.

Ans: Given, [g(x×x)] representing x2,R(x×1) representing

seo images
and Y(1×1) representing 1.

Given equation is 2x2+6x+4

=x2+3x+2

=x2+2x+x+2

=x(x+2)+1(x+2)

The above steps are shown in figures, see below,

seo images


seo images
 
seo images

For the box G, the area x×x=x2

For box R, the area x×1=x

For box Y, Area 1×1=1

So the area of the figure representing 2x2+6x+4 is 

2[ Area (G)]+6[ Area (R)]+4[ Area (Y)]

$\begin{aligned}

&\Rightarrow 2[\text { Area }(G)]+6[\text { Area }(R)]+4[\text { Area }(Y)] \\

&\Rightarrow 2 x^{2}+6 x+4

\end{aligned}$


124. The figure shows the dimensions of a wall having a window and a door of a room. Write an algebraic expression for the area of the wall to be painted.

seo images


Ans: We have the wall dimensions that is 5x×(5x+2) having a window and a door of dimension (2x×x) and (3x×x) respectively.


Then, the area of the window is 2x×x=2x2sq.units

Area of the door 3x×x=3x2sq.units

Area of the wall is 5x×(5x+2)=(25x2+10x)sq.units


Now, 

Area of the required part of the wall to be painted = area of the wall + (area of the window + area of the door)

25x2+10x(2x2+3x2)

25x2+10x(5x2)

25x2+10x5x2

20x2+10xsq.units


125. Match the expressions of column I with that of column II:

Column I

Column II

(21x+13y)2

441x2169y2

(21x13y)2

441x2+169y2+546xy

(21x13y)(21x+13y)

441x2+169y2546xy

441x2169y2+546xy

Ans:

Using the identity,

(a+b)2=a2+b2+2ab

(a+b)2=a2+b22ab

a2b2=(a+b)(ab), will have

Column I


(21x+13y)2

441x2+169y2+546xy

(21x13y)2

441x2+169y2546xy

(21x13y)(21x+13y)

441x2169y2


Maths is the subject that requires so much practice from the students, because, unlike other subjects which are based on the theory, Maths requires the students to practice solving the problem. And For example for the NCERT Class 8, students can find so many questions to practice from for the 7th chapter which is Algebraic Expression, Identities & Factorisation.

 

But only solving the questions is not enough because students always want to know whether they have properly solved the problem or not, otherwise, the whole practice becomes useless and in vain.

 

Hence, Vedantu has brought to the students of Class 8 the complete solutions for the Exemplar of the Math, chapter 7, which is Algebraic Expression, Identities & Factorisation.


Benefits of Solving the Exemplar of the Chapter Class 8, Math, Chapter 7 Algebraic Expression, Identities & Factorisation.

Since Math is a practical subject, there are many benefits of solving the exemplar of it, a few of which are as under: -

  • It provides the students with enough practice for the chapter on Algebraic Expression, Identities & Factorisation.

  • It helps the students in understanding their weaknesses and their strengths.

  • It gives a good idea to the students in regards to tackling the chapter on Algebraic Expression, Identities & Factorisation in the exam.

WhatsApp Banner

FAQs on NCERT Exemplar for Class 8 Maths Solutions Chapter 7 Algebraic Expression, Identities & Factorisation

1. How can I make myself better in Class 8, chapter 7, Algebraic Expression, Identities & Factorisation?

You may find the following steps useful for making yourself better in Class 8, Chapter 7 Algebraic Expression, Identities & Factorisation.

  • Understand all the concepts of Algebraic Expression, Identities & Factorisation. This revision note can help you in clearing your concepts: CBSE Class 8 Math Chapter 9 - Algebraic Expressions and Identities Revision Notes (vedantu.com)

  • Find your weak spot and revise those topics.

  • After that practice as many questions of the Algebraic Expression, Identities & Factorisation as possible. And you can do this by solving the Exemplar questions.

  • Lastly, match your answers with the solutions, to be sure about your understanding.

2. How many questions are there in the Exemplar of the Algebraic Expression, Identities & Factorisation?

There are many questions given in the Exemplar of the Algebraic Expression, Identities & Factorisation, for the students to practice. A total of 114 questions are there, which are divided in the following manner: -

  • Question 1 to 33 are multiple-choice type questions.

  • Questions 34 to 58 fill in the blank question.

  • The next 21 questions, i.e. 59 to 80 are true and false type questions. Which requires the students to first solve the given expression to determine whether it is true or false.

  • The remaining questions are the solving the expression and Simplification type.

3. Should I solve all the questions of the Exemplar for the Algebraic Expression, Identities & Factorisation?

Yes, you must solve all the questions given in the example of Algebraic Expression, Identities & Factorisation. Because Math is the subject that demands so much practice from the students and therefore practicing the questions of the Math is of utmost importance for the students. Solving all the questions of the exemplar for the Class 8, chapter Algebraic Expression, Identities & Factorisation gives students the practice that makes them understand how to approach a particular question as soon as they see it.

4. I have solved all the questions for the Exemplar for Class 8, Math chapter Algebraic Expression, Identities & Factorisation, but how can I make sure my solutions are correct?

First of all, you have done a great job by solving all the questions given in the Exemplar for the Algebraic Expression, Identities & Factorisation. Now for the part of making sure that you have got all the answers right, all you have to do is to compare your answers with the answers provided in the solution of the same chapter. And for the solution, you do not have to worry much, because Vedantu provides the complete solutions for the Exemplar of Class 8, chapter 7, which is Algebraic Expression, Identities & Factorisation, which you can download for free.

5. Why should I follow the solutions given by the Vedantu for the Math Exemplar of the Class 8 Algebraic Expression, Identities & Factorisation?

To answer this question let us first see the qualities of a good solution briefly: -

  • It has to be solved by an expert.

  • It must be easy to understand and comprehend.

  • It must include an explanation of all the questions.

All these three essential qualities are fulfilled by the solutions that Vedantu provides.

  • It is solved by expert teachers, highly qualified in the field of Mathematics.

  • Everything is written clearly and concisely, hence easy to understand.

  • It explains all the questions, including the multiple-choice questions.