Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 10 Maths Important Questions - Chapter 6 Triangles

ffImage
banner

Important Questions for CBSE Class 10 Maths Chapter 6 Triangles: FREE PDF Download

Are you looking for important questions to help you master Chapter 6 - Triangles for CBSE Class 10 Maths? This chapter covers essential concepts like the similarity of triangles, proportionality theorems, and properties of triangles. By practising key questions, you can strengthen your understanding and improve your problem-solving skills. Whether it's finding the missing sides, applying similarity criteria (AA, SSS, SAS), or solving real-life problems, this chapter is crucial for scoring well in your exams according to the latest Class 10 Maths Syllabus.

toc-symbolTable of Content
toggle-arrow


To help you prepare, we’re offering a FREE PDF of the most important questions from Chapter 6 - Triangles. This resource is designed to provide you with a wide variety of problems to practise and improve your skills, making sure you're fully prepared for the upcoming exam. Download the PDF for Class 10 Maths Important Questions now and boost your preparation with high-quality questions for your success.

Courses
Competitive Exams after 12th Science
Watch videos on

CBSE Class 10 Maths Important Questions - Chapter 6 Triangles
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
TRIANGLES [MCQ Score Booster Menti Quiz] CBSE 10 Math Chapter 6 (1st Term Exam) | Umang | Vedantu
4.5K likes
80.9K Views
3 years ago
More Free Study Material for Triangles
icons
Ncert solutions
928.8k views 15k downloads
icons
Revision notes
856.2k views 14k downloads
icons
Ncert books
782.4k views 13k downloads

Access Class 10 Maths Chapter 6 Triangles Important Questions

1 Mark Question

1. In the figure ABCEDC,if we have AB=4 cm,ED=3 cm,CE=4.2 cmand CD=4.8 cm,then the values of CAandCB are


Triangle


  1. 6 cm,6.4 cm

  2. 4.8 cm,6.4 cm

  3. 5.4 cm,6.4 cm

  4. 5.6 cm,6.4 cm

Ans: (d)  5.6 cm,6.4 cm 

As the triangles are similar,

 ABED=CACE=CBCD=43 

 CACE=CA4.2=43 

 CA=5.6 

Then,

 CBCD=CB4.8=43 

 CB=6.4 


2. The areas of two similar triangles are respectively  9 cm2 and 16 cm2 . Then ratio of the corresponding sides are

  1. 3:4  

  2. 4:3  

  3. 2:3 

  4. 4:5 

Ans: (a)  3:4 

Ratio of area of triangle is equal to the square the ratio of the corresponding sides

Therefore,  916=34 


3. Two isosceles triangles have equal angles and their areas are in the ratio 16: 25,then the ratio of their corresponding heights is

  1. 45 

  2. 54 

  3. 36 

  4. 57 

Ans: (a)  45 

Ratio of area of triangle is equal to the square the ratio of the corresponding sides

Therefore,  1625=45 


4. If  ABCDEF and  AB=5 cm, area  (ΔABC)=20 cm2, area  (ΔDEF)=45 cm2, then  DE= 

  1. 45 cm 

  2. 7.5 cm 

  3. 8.5 cm 

  4. 7.2 cm 

Ans: (b)  7.5 cm 

Ratio of area of triangle is equal to the square the ratio of the corresponding sides

Therefore,  (ΔABC)(ΔDEF)=ABDE 

 2045=5DEDE=7.5 

 (ΔABC)(ΔDEF)=2045=57.5 


5. A man goes  15 m due west and then  8 m due north. Find distance from the starting point.

  1. 17 

  2. 18

  3. 16

  4. 7

Ans: (A)  17 m 

Square of the distance = square of the sum of two distances.

 =152+82=225+64=289=17m 


6. In a triangle  ABC, if  AB=12 cm,BC=16 cm,CA=20 cm, then  ABC is

  1. Acute angled

  2. Right angled

  3. Isosceles triangle

  4. Equilateral triangle

Ans: (b) Right angled


Triangle ABC With Sides AB, AC AND BC


By law of Pythagoras triangle,

 AC2=BC2+AB2=(16)2+(12)2=400 

 AC=20 


7. In an isosceles triangle  ABC,AB=AC=25 cm and  BC=14 cm, then altitude from  A on  BC= 

  1. 20

  2.  24

  3. 12

  4. None of these

Ans: (b)  24 cm 


isosceles triangle


8. The side of square who's diagonal is  16 cm is

  1. 16 cm 

  2. 82 cm 

  3. 52 cm 

  4. None of these

Ans: (a) 82 cm

Length of diagonal = sum of both sides of square.

 (16)2=s2+s2 

 2s2=1616 

 s2=8(16) 

 s=82 


9.In an isosceles triangle  ABC, if  AC=BC and  AB2=2AC2, then  C= 

  1. 45 

  2. 60 

  3. 90 

  4. 30 

Ans: (c)  90 


isosceles triangle


If two sides of a triangle are congruent, then angles opposite to those sides are congruent.

So  C=90 


10. If  ABCΔEDF and  ABC is not similar to  DEF, then which of the following is not true?

  1.  BC×EF=AC×FD 

  2.  AB×EF=AC×DE 

  3.  BC×DE=AB×EF 

  4. BC×DE=AB×FD 

Ans: c)  BC×DE=AB×EF 


$ \vartriangle ABC\sim\Delta EDF $ and $ \vartriangle ABC $

11.A certain right-angled triangle has its area numerically equal to its perimeter. The length of each side is an even integer, what is the perimeter?

  1. 24 units

  2. 36 units

  3. 32 units

  4. 30 units

Ans: 24 units

Length of each side is even integer amd also area is numerically equal its perimeter.

 (6,8,10)  make a Pythagorean triplet.

 82+62=102 

Sum of all sides =perimeter

 6+8+10=24 

 

12. In the given figure, if  AB||CD, then  x= 


Figure with $ \text{AB}||\text{CD}, $


  1. 3

  2. 4

  3. 5

  4. 6

Ans: (a) 3

From the figure it is clear that the triangles   Δ OAB Δ OCD  because all the corresponding angles are equal.

So, we have,

 OAOC=OBOD 

 2x+42x+1=2x+13 

 3(2x+4)=(2x+1)(2x+1) 

 6x+12=4x2+4x+1 

Now, by rearranging the terms to one side of the equation we get,

 4x22x11=0 …….(1)

Now, by using the formula of finding roots of quadratic equation

 ax2+bx+c=0  we get,

 X=b±(b24ac)2a 

By using this formula for equation (1) we get,

x=(2)±(2)2+4(11)(4)2(4)

 x=± 658  

Here, the two values of  x  are,

 x=1.92 

 x=-1.42  

As the length cannot be negative so, the required value of  x  is  1.92 .


13.Length of an altitude of an equilateral triangle of side '  2acm is

  1. 3acm 

  2. 3a cm 

  3. 32a cm 

  4. 23a cm 

Ans: (b)  3a cm 


Length of an altitude of an equilateral triangle


In the right angled  ABC 

 AB2=AD2+DB2 

 AD2=AB2DB2=4a2a2=3a2 

 AD=3acm 


14. If in two triangles  ABC and  PQR,ABQR=BCPR=CAPQ 

  1. PQRCAB 

  2. PQRΔABC 

  3. ΔCBA=PQR 

  4. ΔBCAΔPQR 

Ans: a)  PQRΔCAB 


two triangles $ \text{ABC} $ and $ \text{PQR},\dfrac{AB}{QR}=\dfrac{BC}{PR}=\dfrac{CA}{PQ} $


15. The area of two similar triangles are  81 cm2 and  49 cm2  respectively. If the altitude of the bigger triangle is  4.5 cm, then the corresponding altitude of the smaller triangle is

  1. 2.5 cm 

  2. 2.8 cm 

  3. 3.5 cm 

  4. 3.7 cm 

Ans: c)  3.5 cm 

 AreaoflargerAreaofsmaller=(altitudeoflargeraltitudeofsmaller)2 

 8149=(4.5)2x2 

 97=4.5x 

 x=3.5 


16.In figure,  DF||BC and  AD=1 cm,BD=2 m. The ratio of the area of  ABC to the area of  ADE is

  1. 9:1

  2. 1: 9

  3. 3:1

  4. none of these

Ans: (a) 9:1


$ \text{DF}||\text{BC} $ and $ \text{AD}=1~\text{cm},\text{BD}=2~\text{m}. $


AreaofABCAreaofADF=AB2AD2 

 AB=AB+DB=1+2=3 

 AB2AD2=321=91 


17.In the given figure,  ABCPQR, then the value of  x  and  y  are


$ \vartriangle ABC\sim\vartriangle PQR, $


  1. (x,y)=(6,20) 

  2. (20,60) 

  3. (x,y)=(3,10) 

  4. none of these

Ans: (d)none of these

 ABPQ=ACPR=BCQR 

 2416=30x=6y 

 2416=30xx=20 

 2416=6yy=4 

 (x,y)=(20,4) 


18.In figure,  P  and  Q  are points on the sides  AB  and AC respectively of  ABC  such that  AP=3.5 cm,AQ=3 cm and QC=6 cm . If  PQ=4.5 cm, then  BC is


$ \text{P} $ and $ \text{Q} $ are points on the sides $ \text{AB} $ and AC


  1. 12.5 cm 

  2. 5.5 cm 

  3. 13.5 cm 

  4. none of these

Ans: d)none of these.

 ACAP=CBPQ=ABAQ 

 3+63.5=BC4.5BC=11.5 


19.D, E, F are the mid-points of the sides  AB,BC,  and CA respectively of  ABC,  then  ar(ΔDEF)ar(ΔABC) is

  1. 1: 4

  2. 4: 1

  3. 1: 2

  4. none of these

Ans: (a) 1: 4


$ \text{AB},\text{BC}, $ and CA respectively of $ \vartriangle ABC, $


 AB=2AD 

 ar(ΔDEF)ar(ΔABC)=(DEAB)2 

 =(12)2=14 


2 Marks Questions

1. In the given figures,  ODCOBA,BOC=125  and  CDO=70.  Find


$ \vartriangle ODC\sim\vartriangle OBA,\angle BOC={{125}^{{}^\circ }} $ and $ \angle CDO={{70}^{{}^\circ }}. $


(i)  DOC 

Ans:  The sum of each interior angle and its adjacent exterior angle is equal to 180 degrees

 DOC=180125=55 

(ii)  DCO 

Ans:   DCO=180(70+55)[DOB is a straight line and OC stands on it]

 =180125=55[ sum of angles of a triangle  =180] 

(iii)  OAB 

Ans:  [ODCOBA( given )DOC=AOB,ODC=OBA,DCO=OAB] 

(iv)  AOB 

Ans:  AOB=DOC=55 

(v)  OBA 

Ans:  OBA=ODC=70


2.  ABCDEF  and their areas are respectively  64 cm2  and  121 cm2. If  EF=15.4 cm, find  BC. 


$ \vartriangle ABC\sim\vartriangle DEF $ and their areas are respectively $ 64~\text{c}{{\text{m}}^{2}} $ and $ 121~\text{c}{{\text{m}}^{2}}. $


Ans:  Since ABCΔDEFarea(ΔABC)area(ΔDEF)=BC2EF2 

 [ the ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides]

 64121=BC2(15.4)2 

 BC2=64×154×154121×10×10=64×14×14100 

 BC=8×1410=11.2 cm 


3.  ABC is an isosceles right triangle right-angled at  B. Prove that  AC2=2AB2 


isosceles right triangle right-angled


Ans: In right-angled  ABC, right  AatB 

 AC2=AB2+BC2[ By Pythagoras theorem]

 =AB2+AB2=2AB2[BC=AB(given)] 

 =AC2=2AB2 


4. In the figure,  DE||AC  and  BEEC=BCCP,  prove that

Ans: In  ΔABC,DEAC 

 BDDA=BEEC(i)  [By Thales's Theorem]

Also  BEEC=BCCP(given).(ii) 

  from (i) and (ii), we get

 BDDA=BCCPDCAP 

 (By the converse of Thales's Theorem)


5.The hypotenuse of a right triangle is  6 m  more than twice of the shortest side. If the third side is  2 m  less than the hypotenuse. Find the side of the triangle.

Ans: Let shortest side be  Xm  in length

Then hypotenuse  =(2x+6)m 

And third side  =(2x+4)m 

We have,

 (2x+6)2=x2+(2x+4)2 

 4x2+24x+36=x2+4x2+16+16x 

 x28x20=0 

 x=10 or x=2  

 x=10 

Hence, the sides of triangle are  10 m,26 m  and  24 m. 


6. PQR is a right triangle right angled at P and M is a point on QR such that PMQR. Show that PM2=QM.MR

Ans: Given PQR is a right triangle right angled at P and  PMQR 


right triangle right angled at P and M is a point on QR


 PMRPMQ  

 PRPQ=PMQM=MRPM 

 PMQM=MRPM 

  i. e., PM2=QM.MR 


7. In the given figure, D E O Q and D F OR ,Prove that E F OQ


$ \vartriangle OQR,DE\|OQ $


Ans: In  OQR,DEOQ 

 PEEQ=PDDO.....(1) 

In  OPR,DFOR 

 PDDO=PFFR(ii) 

From (i) and (ii), we get

 PEEQ=PFFR 

 FromPQR 

 EFQR 


8. In figure,  DE||BC . Find EC


Triangle with $ \text{DE}||\text{BC} $


Ans:  DEBC 

 ADDB=AEEC 

 1.53=1EC 

 EC=2 cm 


9. In the given figure,  ABC and AMP are two right-angled triangles, right angled at  B and M respectively, prove that

 (i)ABCAMP 

 (ii)  CAPA=BCMP 


$ \vartriangle ABC $ and DAMP,


Ans: In  ABC and DAMP,

 B=M( 

Each  90)   

 A=A(common)  

 ACB=APM 

 ΔS are equiangular 

i.e.,  ABCAMP 

 BCMP=CAPA 


10. In the given figure,  OA×OB=OC×OD  or  OAOC=ODOB , prove that  A=CandB=D 


$ \vartriangle AOD\,\, $ and $ \vartriangle BOC, $


Ans: In  AOD and  BOC, 

 OA×OB=OC×OD 

  i.e OAOC=ODOB 

And  AOD=BOC  (Vertically opposite Angles)

 AODΔBOC(BySAS) 

 A=C  and  B=D  (Corresponding angles of similar  Δ )


11. In the given figure, 

 DEBC and AD=1 cm,BD=2 cm. What is the ratio of the area of  ABC to the area of ADE ?


$ \because DE\|BC $ in $ \vartriangle ABC $ $ \therefore \angle ADE=\angle ABC $


Ans:  DEBC in  ABC  ADE=ABC 

 AED=ACB 

Also  DAE=DAC 

 ADEΔABC 

 ADEABC 

 AD2AB2=area(ADE)area(ABC) 

 1232=area(ΔADE) area (ΔABC)[AB=AD+OB=1+2=3] 

  Hence, area(ΔABC)area(ΔADE)=91 


12. A right-angle triangle has hypotenuse of length  cm  and one side of length  qcm. If  pq=1, Find the length of third side of the triangle.


A right-angle triangle has hypotenuse of length

Ans: Let third side  =xcm 

Then by Pythagoras theorem.

 p2=q2+x2 

 x2=p2q2  

 =(p+q)×1(pq=1) 

=q+1+q

=2 q+1

 x=2q+1 


13. The length of the diagonals of a rhombus are  24 cm and 10 cm . Find each side of rhombus.

Ans:  AC=24 cmAO=12 cm 

 BD=10 cmOD=5 cm 


rhombus


From right-angled  AODAD2=AO2+OD2 

 AD2=122+52 

 AD2=169 

 AD=13 cm 

Hence each side  =13 cm 


14. In an isosceles right-angled triangle, prove that hypotenuse is  2 times 

Ans: Let hypotenuse of right-angled  Δ=h units and equal sides of triangle  x units

  By Pythagoras theorem,

 h2=x2+x2 

 h2=2x2 

 h=2x 


15. In figure, express  x  in terms of  a,b,c. 


$ \text{x} $ in terms of $ \mathbf{a},\mathbf{b},\mathbf{c}. $


Ans:  ABOOCD 

 xa=x+bc 

 x=ax+ab 

 x(ca)=ab 

 x=abca 


16. The perimeter of two similar triangle ABC and PQR are respectively  36 cm and  24cm. If  PQ=10 cm,  find  AB. 

Ans:  ABCΔPQR 

 ABPQ=BCQR=ACPR 

 AB+BC+ACPQ+QR+PR= perimeter of ΔABC perimeter of ΔPQR 

 AB10=3624 

 AB=36×1024=15 cm 


17. In the given figure,  DE||BC.  If  AD=x,DB=x2,AE=x+2,EC=x1 find the value of x.


$ \text{DE}||\text{BC}. $ If $ AD=x,DB=x-2,AE=x+2,EC=x-1 $


Ans: In the given figure,

D E BC

 ADDB=AEEC 

 xx2=x+2x1 

 x2x=x24 

 x=4 


18. In the given figure,  AOOC=BOOD=12 and  AB=5 cm, find the value of  DC. 


$ \vartriangle AOB $ and $ \vartriangle COD, $


Ans: In  AOB and  COD, 

 AOB=COD  [Vertically opposite angles]

 AOOC=BOODAOOB=OCOD  [Given]

 AOBCOD  [By SAS similarity]

 AOCO=BODO=ABCD 

 12=ABDC[AOOC=BOOD=12isgiven] 

 12=5DC 

 DC=10 cm 


19. In  ABC,AB=AC and  D is a point on side  AC, such that  BC2=AC×CD Prove that  BD=BC. 


$ \Delta ABC $ in which $ AB=AC,D $ is a point on $ BC $


Ans: Given:  ΔABC in which  AB=AC,D is a point on  BC 

To prove:  BD=BC  

Proof:  BC2=AC×CD [given] 

 BCAC=DCBC 

  In ABC and BDC, 

 BCCA=DCCB and C=C[ Common ] 

 ABCBDC[SASsimilarity] 

 ABBD=ACBCACBD=ACBC[AB=AC] 

 BD=BC 


3 Marks Questions

1. In the given figure,  QTPR=QRQS  and  1=2 . Prove that  ΔPQSΔTQR 


$ \dfrac{QT}{PR}=\dfrac{QR}{QS} $


Ans: Since  QTPR=QRQS [Given]

 QTQR=PRQS 

Since  1=2[Given] 

 PQ=PR 

 (In  ΔPQR sides opposites to opposite angles are equal)

 QTQR=PQQS.(iii)[Form(i) and (ii)] 

Now in  PQS and  TQR 

From (iii), PQQS=QTQRi.e.PQQT=QSQR

And  Q=Q [Common]

 ΔPQSΔTQR  [By S.A.S. Rule of similarity]


2. In the given figure, PA, QB and RC are each perpendicular to AC. Prove that  1x+12=1y 


$ \vartriangle PAC\text{ and }\Delta QBC\text{ } $


Ans: In   PAC and ΔQBC  

 PAC=QBC[ Each =90] 

 PCA=QCB[Common] 

 PACΔQBC 

 xy=ACBC i.eyx=BCAC.(i) 

  Similarly, zy=ACAB i.eyz=ABAC.(ii) 

 Adding (i) and (ii), we get  

 BC+ABAC=yx+yz=y(1x+1z) 

 ACAC=y(1x+1z)1=(1x+1z) 

 1y=1x+1z 


3. In the given figure,  DE||BC and AD:DB =5: 4,find   area (ΔDFE) area (ΔCFB) .


$ \vartriangle ADE $ and $ \vartriangle ABC, $


Ans: In  ADE and  ABC,   1=1 (Common)

 2=ACB  [Corresponding angles]

 ADEABC  [By A.A Rule]

 DEBC=ADAB..i) 

Again in  DEF and  CFB, 

 3=6[Alternateangles] 

 4=5  [Vertically oppositeangles]

 ΔDFECFB  [By A.A Rule]

  Area (ΔDFE) area (ΔCFB)=DE2BC2=(ADAB)2  [From (i)]

 =(59)2[ADDB=54ADAD+DB=55+4ADDB=59] 

 area(ΔDFE)area(ΔCFB)=2581 


3. Determine the length of an altitude of an equilateral triangle of side ‘2a’ cm.


$ \vartriangle ADB $ and $ \vartriangle ADC, $


Ans: In right triangles  ADB and  ADC, 

A B=A C 

A D=A D

 ADB=ADC(Each=90) 

 ADBADC(RHS) 

 BD=DC(CPCT) 

 BD=DC=a[BC=2a] 

In right  ADB,AD2+BD2=AB2 (By Pythagoras Theorem)

 AD2+a2=(2a)2 

 AD2=4a2a2=3a2 

 AD=3a cm 


4. In the given figure, if  1=2 and  NSQMTR.  Then prove that  ΔPTSΔPRO 


$ \Rightarrow \angle Q=\angle R(\text{ in }\Delta PQR) $


Ans:  Q=R( in ΔPQR) 

 =9012P 

 Again 1=2[giveninPST] 

 1=2=12(180P) 

 =9012P 

Thus, in  ΔPTS and  PRQ 

 1=Q[ Each =9012P] 

 2=R,P=P( Common ) 

 ΔPTSΔPRQ 


5. In the given figure the line segment XY||AC and XY divides triangular region ABC into two points equal in area, Determine AXAB .


figure the line segment XY||AC and XY divides triangular region ABC into two points equal in area


Ans: Since  XYAC 

 BXY=BAC  

 BYX=BCA  [Corresponding angles]

 ΔBXYBAC  [A.A. similarity]

 ar(ΔBXY)ar(ΔBAC)=BX2BA2 

But  ar(ΔBXY)=ar(XYCA) 

 2(ΔBXY)=ar(ΔBXY)+ar(XYCA) 

 =ar(ΔBAC) 

 ar(ΔBXY)ar(ΔBAC)=12 

 BX2BA2=12 

 BXBA=12 

 BABXBA=212 

 AXAB=212=222 


6. BL and CM are medians of  ABC right angled at A. Prove that  4(BL2+CM2)=5BC2 


BL and CM are medians of $ \vartriangle ABC $ right angled at A


Ans: BL and CM are medians of a  ABC  in which  A=90 

From  ΔABC,BC2=AB2+AC2 

From right angled  ABL, 

 BL2=AL2+AB2 

 i.e.,BL2=(AC2)2+AB2 

 4BL2=AC2+4AB2 

 (ii)

From right-angled  CMA 

 CM2=AC2+AM2 

i.e.  CM2=AC2+(AB2)2 [ mid-point] 

 CM2=AC2+AB24 

 4CM2=4AC2+AB2 

Adding (ii) and (iii), we get

i.e.  4(BL2+CM2)=5BC2 [From (i)]


7.  ABC is a right triangle right angled at  C. Let  BC=a,CA=b,AB=c and let  p be the length of perpendicular from C on AB, prove that

(i)  cp=ab 


$ \mathbf{cp}=\mathbf{ab} $

Ans:  Draw  CDAB 

Then,  CD=p 

Now area of  ABC=12(BC×CA) 

 =12ab 

Also area of  ΔABC=12AB×CD 

 =12cp Then,  12ab=12cp 

 cp=ab 

(ii)  1p2=1a2+1b2 

Ans: Since  ABC is a right-angled triangle with  C=90 

 AB2=BC2+AC2 

 c2=a2+b2 

 (abp)2=a2+b2 

 cp=ab 

 c=abp 

 1p2=a2+b2a2b2 

 1p2=1b2+1a2 

Thus  1p2=1a2+1b2 


8. In figure, a triangle  ABC is right-angled at B. side BC is trisected at points  D and  E, prove that  8AE2=3AC2+5AD2 .


triangle $ \text{ABC} $ is right-angled at B


Ans: Given:  ABC is right-angled at B.Side BC is trisected at D and E.

To Prove:  8AE2=3AC2+5AD2 

Proof: D and E are the paints of trisection of BC

 BD=13BC and BE=23BC 

In right-angled triangle  ABD 

 AD2=AB2+BD2.(ii)  [Using Pythagoras theorem]

In  ABE 

 AE2=AB2+BE2(iii) 

In  ABC 

 AC2=AB2+BC2(iv) 

From (ii) and (iii), we have

 AD2AE2=BD2BE2 

 AD2AE2=(13BC)2(23BC)2 

 AD2AE2=19BC249BC2=39BC2 

 AE2AD2=13BC2.(v) 

From (iii) and (iv), we have

 AC2AE2=BC2BE2 

 =BC249BC2 

 AC2AE2=59BC2 

From (v) and (vi), we get

 AC2AE2=53(AE2AD2) 

 3AC23AE2=5AE25AD2 

 8AE2=5AD2+3AC2 


9. In figure, DEFG is a square and  BAC=90, show that DE2=BD×EC .


DEFG is a square and $ \angle BAC={{90}^{{}^\circ }}, $


Ans: Given:  ABC is right-angled at A and DEFG is a square To Prove:  DE2=BD×EC 

Proof: Let  C=x..(i) 

Then,  ABC=90x[ΔABC is right angled ] 

Also  ΔBDG is right-angled at D.

 BGD=90(90x)=x.(ii) 

From (i) and (ii), we get

 BGD=C..(iii) 

Consider  ΔBDGandΔCEF 

 CEF=BDG=90[DEFG is square ]

 BGD=C  [From (iii) ]

 BDGFEC[ByAAsimilarity] 

 BDEF=DGEC 

 EF×DG=BD×EC 

But  EF=DG=DE[ side of a square]

 DE×DE=BD×EC 

 DE2=BD×EC 


10.In a quadrilateral  ABCD,P,Q,R,S are the mid-points of the sides  AB,BC,CD and DA respectively. Prove that PQRS is a parallelogram.


parallelogram PQRS


Ans: To Prove: PQRS is a parallelogram

Construction: Join AC

Proof: In  DAC, 

 DSSA=DRRC=1[S and R are mid-points of AD and DC ]

 SRAC ....... (i) [by converse of B.P.T]

In  ΔBAC,PBAP=BQQC=1[P and  Q are mid points of  AB and BC]

 PQAC  .......(ii) [By converse of B.P.T]

From (i) and (ii), we get

 SRPQ.(iii) 

Similarly, join B to D and PS| |QR

 ⇒∴PQRS is a parallelogram.


11. Triangle  ABC is right-angled at  C and  CD is perpendicular to  AB, prove that  BC2×AD=AC2×BD 


$ \vartriangle ABC $ right angled at $ \text{C} $ and $ CD\bot AB $


Ans: Given: A  ABC right angled at  C and  CDAB 

To Prove:  BC2×AD=AC2×BD 

Proof: Consider  ACDandΔDCB 

Let  A=x 

Then B=90x[ΔACB is right angled]

 DCB=x[ΔCDB is right angled ]

In  ADC and  CDB, 

 ADC=CDB[90 each ] 

 A=DCB=x 

 ACDCBD  [By AA similarity ]

 arΔACDarΔCBD=AC2BC2 

 12AD×CD12BD×CD=AC2BC2 

 ADBD=AC2BC2 

 BC2×AD=AC2×BD 


12. Triangle  ABC is right angled at  C and  CD is perpendicular to  AB.  Prove that  BC2×AD=AC2×BD 


Triangle ABC


Ans: Given: ABCright-angled at C and  CDAB 

To prove:  BC2×AD=AC2×BD 

Proof: Consider  ACD and  DCB 


$ \vartriangle ACD $ and $ \vartriangle DCB $


Let  A=x 

Then  B=90x[ΔACB is right angled ]

 DCB=x[ΔCDB is right angled ]

In  ADC and  ΔCDB 

 ADC=CDB[90 each ]

 A=DCB=x[ from above ]

 ACDΔCBD[ AA similarity]

 ar(ΔACD)ar(ΔVBD)=AC2BC2 

 12×AD×CD12×BD×CD=AC2BC2 

 ADBD=AC2BC2 

 BC2×AD=AC2BD 


13. In figure,  ABC and DBC are two triangles on the same base BC. If AD intersect EC at 0, prove that  ar(ΔABC)ar(ΔDBC)=AODO 


ABC and DBC are two triangles


Ans: Given: ABC and DBC are two triangles on the same base BC but on the opposite sides of BC, AD intersects BC at O.

Construction: Draw  ALBC and  DMBC 

To prove:  ar(ΔABC)ar(ΔDBC)=AOEO 

Proof: In  ALOandDMO 

 ALO=DMO[each   90] 

 AOL=DOM[Verticallyoppositeangles] 

 ALOΔDMO[ By AA similarily]

 ALDM=AODO 

 ar(ΔABC)ar(ΔDBC)=AODO 


14. In figure, ABC is a right triangle right-angled at B. Medians AD and CE are of respective lengths 5 cm and  25cm , find length of AC.


$ \vartriangle ABC $ with $ \angle B={{90}^{{}^\circ }},\text{AD} $ and $ \text{CE} $


Ans: Given:  ABC with  B=90,AD and  CE are medians 

To find: Length of AC

Proof: In  ABD right-angled at B,

 AD2=AB2+BD2[By pythagoras theorem ] 

 =AB2+(12BC)2[BD=12BC] 

 =AB2+14BC2 

 4AD2=4AB2+BC2..(i) 

In  ΔBCE right-angled at B

 CE2=BE2+BC2 

 CE2=(12AB)2+BC2 

 CE2=14AB2+BC2 

 4CE2=AB2+4BC2.(ii) 

 4AD2+4CE2=5AB2+5BC2=5(AB2+BC2) 

 4AD2+4CE2=5AC2 

Given that  AD=5 and  CE=25 

 4(5)2+4(25)2=5AC2 

 100+80=5AC2 

 AC2=1805 

 AC2=36AC=6 cm 


15. In the given figure,  QROS=QTPR and  1=2, show that  PQSΔTQR. 


$ \dfrac{QR}{QS}=\dfrac{QT}{PR} $ and $ \angle 1=\angle 2 $


Ans: Given:  QRQS=QTPR and  1=2 

Proof: As  1=2 

 PQ=PR..(i)[ side opposite to equal angles are equal]

Also  QRQS=QTPR( given)  .(ii) 

 QRQS=QTPQ From (i) and (ii)

In  PQS and TQR, we have

 QRQS=QTQP=QSQTQRQP[ From (ii)]


16. Given a triangle ABC. 0 is any point inside the triangle  ABC,X,Y,Z are points on  OA, OB and OC, such that  XY||ABandXZ||AC, show that  YZAC. 


$ \vartriangle ABC,O $ is a point inside $ \vartriangle ABC,X,Y $


Ans: Given: A  ABC,O is a point inside  ABC,X,Y and  Z are points on  OA,OB and OC respectively such that  XY||AB and  XZAB and  XZ||AC 

To show: YZ| | BC

Proof: In  OAB,XYAB 

 OXAX=OYBY.(i)[ByB.P.T] 

In  ΔOAC,XZAC 

 OXAX=OZCZ..(ii)[ByB.P.T] 

From (i) and (ii), we get  OYBY=OZCZ.  (iii)

Now in  OBCOYBY=OZCZ(from(iii)) 

 YZBC  [Converse of B.P.T]


17. PQR is a right triangle right angled at Q. If QS = SR, show that  PR2=4PS23PQ2 


right triangle right angled at Q.


Ans: Given: PQR is a right Triangle, right-angled at Q Also  QS=SR 

To prove:  PR2=4PS23PQ2 

Proof: In right-angled triangle PQR right angled at Q.

  PR2=PQ2+QR2 [By Pythagoras theorem]

Also  QS=12QR[QS=QR] 

In right-angled triangle PQS, right angled at Q.

 PS2=PQ2+QS2 

 PS2=PQ2+(12QR)2[ From (ii)] 

 4PS2=4PQ2+QR2.(iii) 

From (i) and (iii), we get

 PR2=PQ2+4PS24PQ2 

 PR2=4PS23PQ2 


18. A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15 m.


AB be the width of the street and C be the foot of ladder


Ans: Let AB be the width of the street and C be the foot of ladder.

Let D and E be the windows at heights  12 m and  9 m respectively from the ground.

In  ΔCAD, right angled at A, we have

 CD2=AC2+AD2 

 152=AC2+122 

 AC2=225144=81 

 AC=9 m 

In  ΔCBE, right angled at B, we have

 CE2=BC2+BE2 

 152=BC2+92 

 BC2=22581 

 BC2=144 

 BC=12m 

Hence, width of the street  AB=AC+BC=9+12=21 m 


19. In figure,  XPPY=XQQZ=3 , if the area ofXYZ is  32cm2  then find the area of the quadrilateral PYZQ.


triangle xyz with quadrilateral PQYZ


Ans: Given  XPPY=XQQZ (given)

 PQYZ.....  (i) (By converse of B.P.T)

In  XPQ and XYZ , we have

(XPQ=Y) (From (i) corresponding angles)

 X=Y[common] 

 ΔXPQΔXYZ  (By AA similarity)

 ar(ΔXYZ)ar(ΔXPQ)=XY2XP2 

We have  PYXP=13PYXP+1=13+1PY+XPXP=43 

 XYXP=43 

Substituting in (i), we get

 ar(ΔXYZ)ar(ΔXPQ)=(43)2=169 

 32ar(XPQ)=169 

 ar(XPQ)=32×916=18 cm2 

Area of quadrilateral  PYZQ=3218=14 cm2 


4 Marks Questions

1. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in district points, ten other two sides are divided in the same ratio. By using this theorem, prove that inABC if  DEBC  then,  ADBD=AEAC 


$ \vartriangle ABC\,\,\,\,DE\|BC $ intersect AB at D and AC at E. To Prove: $ \dfrac{AD}{DB}=\dfrac{AE}{EC} $


Ans: Given: In  ABCDEBC intersect AB at D and AC at E. To Prove:  ADDB=AEEC 

Construction: Draw  EFAB and  DGAC  and join DC and  BE. 

Proof:  arADE=12AD×EF 

 arΔDBE=12DB×EF 

 arADEarΔDBE=12AD×EF12DB×EF=ADDB.(i) 

Similarly,  arΔADEarΔDEC=12AE×DG12EC×DG=AEEC..(ii) 

Since  DBE and  DEC are on the same base and between the same parallels

 ar(ΔDBE)=ar(ΔDEC) 

 1ar(ΔDBE)=1ar(ΔDEC) 

 arΔADEarΔDBF=arΔADEarΔDFC 

 ADDB=ABEC 

 DEBC 

 ADAD+DB=AEAE+EC[pq=rspp+q=rr+s] 

 ADAB=AEAC 


2. Prove that the ratio of areas of two similar triangles are in the ratio of the squares of the corresponding sides. By using the above theorem solve in two similar triangles PQR and LMN, QR = 15cm and MN = 10 cm. Find the ratio of areas of two triangles.


Two triangles ABC and DEF


Ans: Given: Two triangles ABC and DEF

Such that  ABCDEF 

To Prove:  ar(ΔABC)ar(ΔDEF)=AB2DE2=BC2EF2=AC2DF2 

Construction: Draw  ALBCandDMEF 

 Proof: ar(ΔABC)ar(ΔDEF)=12(BC)(AL)12(EF)(DM) 

 [ar of Δ=12b×h] 

 Area(ΔABC)Area(ΔDEF)=BCEF×ALDM..(i) 

Again, in  ALB  and  DME we have

 ALB=DME[ Each =90] 

ABL=DEM[ABCDEFB=E]

 ALBDME  [By AA rule]

 ABDE=ALDM[ Corresponding sides of similar triangles are proportional] Further,  ABCΔDEF 

 ABDE=BCEF=ACDF 

From (ii) and (iii),

 BCEF=ALDM 

Putting in (i), we get

  Area (ΔABC) Area (ΔDEF)=AlDM×ALDM 

 =AL2DM2=AB2DE2 

 =AC2DF2 

 Hence, ar(ΔABC)ar(ΔDEF)=AB2DE2=BC2EF2=AC2DF2 

Since  PQRLMN 

 ar(ΔPQR)ar(ΔLMN)=QR2MN2=(15)2(10)2 

 =225100=94 

Hence, required ratio is 9: 4.


3. Prove that in a right-angled triangle the square of the hypotenuse is equal to the sum 45 of the squares of the other two sides. Use the above theorem in the given figure to prove that

 PR2=PQ2+QR22QM.QR 


$ \vartriangle PQR$ right-angled at M


Ans: Given:  ABC right-angled at A

To Prove:  BC2=AB2+AC2 

Construction: Draw  ADBC from A to BC

Proof: In  BAD and ABC ,

 B=B  [Common]  BAC=BDA=90 

 BADBCA[ By AA similarity ]

  ABBC=BDAB 

 AB2=BC×AD.(i) 

Similarly, in  ADC and  BAC 

 ADC=BAC[90 each ] 

 C=C[Common] 

 ADCBAC[ByAAsimilarity] 

 DCAC=ACBC 

 AC2=DC×BC.(ii) 

 (i)+(ii) 

 AB2+AC2=BC×BD+DC×BC 

 =BC[BD+DC] 

 =BC×BC 

 AB2+AC2=BC2 

To Prove:  PR2=PQ2+QR22QMQR 

Proof: In  PMR 

 PR2=PM2+MR2[ Using above theorem]

 =PM2+(QRQM)2 

 =PM2+QR2+QM22QMQM 

 =(PM2+QM2)+QR22QMQR 

 =PQ2+QR22QMQR[PQ2=QM2+PM2]


4. Prove that the ratio of areas of two similar triangles is equal to the square of their corresponding sides. Using the above theorem do the following the area of two similar triangles are  81cm2 and  144cm2 , if the largest side of the smaller triangle is 27 cm, then find the largest side of the largest triangle.


Two triangles ABC and DEF


Ans: Given: Two triangles ABC and DEF such that  ABCDEF 

To prove:  ar(ΔABC)ar(ΔDEF)=AB2DE2=BC2EF2=AC2DF2 

Construction: Draw  ALBC and  DMEF 

Proof: Since similar triangles are equiangular and their corresponding sides are proportional

 ABCΔDEF 

 A=D,B=E,C=F 

And  ABDE=BCEF=ACDF.(i) 

In  ALB and DMB ,

 1=2 and B=E 

 ALBDME[ByAAsimilarity] 

 ALDM=ABDE...(ii) 

From (i) and (ii), we get

 ABDE=BCEF=ACDF=ALDM 

Now   area (ΔABC)area(ΔDEF)=12(BC×AL)12(BF×DM) 

  Area (ΔABC) Area (ΔDEF)=BCEF×ALDM 

  Area (ΔABC) Area (ΔDEF)=BCEF×BCEF=BC2EF2 

Hence,   Area ABCAreaDEF=AB2DE2=BC2EF2=AC2DF2 

Let the largest side of the largest triangle be  x cm 

Using above theorem,

 x2272=14481x27=129 

 x=36 cm 


5. In a triangle if the square of one side is equal to the sum of the squares on the other two sides. Prove that the angle apposite to the first side is a right angle. Use the above theorem to find the measure  PKR of in figure given below.


Figure to measure $ \angle PKR $


Ans: Given: A  ABC such that

 AC2=AB2+BC2 

To prove: Triangle ABC is right angled at B

Construction: Construct a triangle DEF such that

 DE=AB,EF=BC and DE=90 

Proof:  ΔDEF is a right angled triangle right angled at E[construction]

  By Pythagoras theorem, we have

 DF2=DE2+EF2 

 DF2=AB2+BC2[DE=AB and EF=BC] 

 DF2=AC2[AB2+BC2=AC2] 

 DF2=AC2[AB2+BC2=AC2] 

 DF=AC 

Thus, in  ABC and DEF , we have


$ \vartriangle ABC $ and $ \vartriangle DEF $


 AB=DE,BC=EFandAC=DF  [By Construction and (i)]

 ABCDEF 

 B=E=90 

Hence,  ABC is a right triangle.

Hence,  ABC is a right triangle.

  In ΔQPR,QPR=90 

 242+x2=262 

 x=10PR=10 cm 

Now in  ΔPKR,PR2=PK2+KR2[ as  102=82+62] 

 ΔPKR is right angled at  K 

 PKR=90


Maths Class 10 Chapter 6 Triangles Important Points and Theorems

Introduction

The triangles class 10 notes chapter 6 provided here is a crucial study resource for the students studying in class 10. These CBSE class 10 maths triangles important questions are brief, and it also covers all the theories from this lesson. Questions from these theories are likely to be asked in the board exam. You will also learn about theorems that are based on comparable concepts. In your preceding year's classes, you must have studied the basics of triangles, for example, the perimeter of a triangle and its area, etc.

Triangle

A triangle can be characterized as a polygon that has three points and three sides. The inside points of a triangle total up to 180 degrees, and the outside points total up to 360 degrees. Based on the length and its angle, it can be classified into the following kinds-

  • Scalene Triangle – Each side of the triangle is of different measure.

  • Isosceles Triangle – Any two different sides of the triangle are of equivalent length. 

  • Symmetrical Triangle – All the three sides of a triangle are equivalent, and each angle is 60 degrees. 

  • Acute Angled Triangle – All the angles are not more than 90 degrees.

  • Right Angle Triangle – Any of the three angles is equivalent to 90 degrees. 

  • Obtuse-Angled Triangle – One out of the three angles is more than 90 degrees.


Similar Figures

  • Two forms having an identical shape, but not necessarily identical, are referred to as similar figures.

  • All congruent forms are similar, but not all similar forms are congruent.

  • Example- any two squares since their sides are proportional.


Triangles Similarity Criteria

To determine if the two triangles are similar or not, you need to check the following four criteria:

  • Side-Side-Side (SSS) Similarity Criterion – When the relating sides of any two triangles are in a similar proportion, at that point, their comparing angles will be equivalent, and the triangle will be considered as similar triangles. 

  • Point Angle (AAA) Similarity Criterion – When the relating angles of any two triangles are equivalent, at that point, their comparing side will be in similar proportion, and the triangles are viewed as similar.

  • Point Angle (AA) Similarity Criterion – When two angles of one triangle are separately equivalent to the two angles of the other triangle, at that point, the two triangles are considered as similar. 

  • Side-Angle-Side (SAS) Similarity Criterion – When one angle of a triangle is equal to one angle of another triangle and the sides incorporating these angles are in a similar proportion (relative), at that point, the triangles are supposed to be similar.


Thales Theorem

Statement: A-line that is drawn parallel to any side of a triangle will intercross the other two remaining sides in separate points. The other two remaining sides are then declared to be divided in an equivalent ratio."

Proof:

In ∆ABC, DE || BC.

To prove: ADDB=AEEC

Construction: Draw EM perpendicular AD and DN perpendicular AE. Join point B to point E and point C to point D.

Proof: In ∆ADE and ∆BDE,

ar(ΔADE)ar(ΔBDE)=12×AD×EM12×DB×EM=ADDB (i) [Area of ∆ = 12 x base x corresponding altitude

In ∆ADE and ∆CDE,

ar(ΔADE)ar(ΔCDE)=12×AE×DN12×EC×DN=AEEC

∵ DE || BC …[Given

∴ ar(∆BDE) = ar(∆CDE)

From (i), (ii) and (iii),

ADDB=AEEC


Example - If point D is the center/radius of the circle and BC is 4 cm, and AC is 3 cm, What is the diameter of the circle?

Solution

According to Thales theorem, triangle ABC is considered as a right triangle where ∠ACB = 90°.

To determine the diameter of the given circle, one should apply the Pythagorean theorem.

BC2 + AC2 =AB2

4*4 + 3*3 = AB2

16 + 9 = AB2

25 = AB2

AB = 5 cm

Hence, the diameter of the circle is 5 cm


Area of Triangles

Statement- "The ratios of the areas of any two comparable triangles is equivalent to the square of the ratio of their similar sides."

Proof

Given: ∆ABC ~ ∆DEF

To prove: ar(ΔABC)ar(ΔDEF) = AB2 DE2 = BC2 EF2 = AC2 DF2

Construction: Draw AM perpendicular BC and DN perpendicular EF.

Proof: In ∆ABC and ∆DEF

ar(ΔABC)ar(ΔDEF)=12×BC×AM12×EF×DN=BCEF.AMDN …(i) 

[Area of ∆ = 12 x base x corresponding altitude]

∵ ∆ABC ~ ∆DEF

∴ ABDE=BCEF …..(ii) …[Sides are proportional]

∠B = ∠E ……..[∵ ∆ABC ~ ∆DEF]

∠M = ∠N …..[each 90°]

∴ ∆ABM ~ ∆DEN ……[AA similarity]

∴ ABDE=AMDN …..(iii) …[Sides are proportional]

From (ii) and (iii), we can deduce- BCEF=AMDN …(iv)

From (i) and (iv), we can deduce- ar(ΔABC)ar(ΔDEF)=BCEF.BCEF=BC2 EF2

Similarly, it can be proven that

ar(ΔABC)ar(ΔDEF)=AB2 DE2 = AC2 DF2

∴ar(ΔABC)ar(ΔDEF)=AB2 DE2=BC2 EF2=AC2 DF2 

Example -In ΔABC andΔAPQ, the length of the sides are given as AP = 4 cm , PB = 8 cm and BC = 6 cm. Determine the ratio of the areas of triangle ABC and triangle APQ.

 In triangle ABC and triangle APQ, ∠PAQ is common 

and 

∠APQ = ∠BAC (corresponding angles)

ΔABC ~ ΔAPQ (AA criterion for similar triangles)

Since the two triangles are comparable, we can use the theorem based on the areas of similar triangles,

area of ΔABC / area of ΔAPQ = (AB/AP)2 = (12/6)2 = 4


Pythagoras’ Theorem

Statement: In a right-angled triangle, the total of the squares of the remaining two sides of the triangle is equivalent to the square of the hypotenuse.

Proof 

Given: ABC is a right triangle that is right-angled at point B.

To prove: AB² + BC² = AC²

Construction: Draw BD ⊥ AC

Proof: In ∆s ABC and ADB

∠A = ∠A (common)

∠ABC = ∠ADB (each angle 90°)

∴ ∆ABC ~ ∆ADB (AA Similarity rule)

∴ ABAD=ACAB (sides are proportional)

⇒ AB² = AC.AD

Now in ∆ABC and ∆BDC

∠C = ∠C (common)

∠ABC = ∠BDC (each 90°)

∴ ∆ABC ~ ∆BDC (AA similarity)

∴ BCDC=ACBC (sides are proportional)

BC² = AC.DC (ii)

On adding (i) and (ii), we get

AB² + BC² = ACAD + AC.DC

⇒ AB² + BC² = AC.(AD + DC)

AB² + BC² = AC.AC

∴AB² + BC² = AC²

Example:

The height of the triangle is 4 and the breadth is 3, find the hypotenuse.

Solution 

EG and GF are the two given sides of the right-angled Triangle.

EG = 5 cm and GF = 12 cm 

From Pythagoras Theorem, we have:

EF2 = EG2 + GF2

= (5)2 + (12)2

= 25 + 144

So, EF2 = 169

EF = 13 cm


Converse of Pythagoras’ Theorem

Statement: In a triangle, if the sum of the squares of the other two remaining sides of the triangle is equivalent to the square of one side of the triangle then the angle opposite the primary side is definitely a right angle."

Proof 

To prove: ∠ABC = 90°

Construction: Draw a right-angled ∆DEF in which DE = AB and EF = BC

Proof: In ∆ABC,

AB² + BC² = AC² …(i) (given)

In rt. ∆DEF

DE² + EF² = DF² …(By pythagoras theorem)

AB² + BC² = DF² …..(ii) …(DE = AB, EF = BC)

From (i) and (ii), we get

AC² = DF²

⇒ AC = DF

Now, DE = AB …(by cont)

EF = BC …(by cont)

DF = AC …….(proved above)

∴ ∆DEF ≅ ∆ABC ……(sss congruence)

∴ ∠DEF = ∠ABC …..(CPCT)

∠DEF = 90° …(by cont)

∴ ∠ABC = 90°


Benefits of Important Questions for CBSE Class 10 Maths Chapter 6 - Triangles

  • These questions serve as a strategic tool to aid students in their exam preparation by offering a focused and efficient way to revise crucial concepts and theorems related to triangles.

  • By concentrating on key topics, they help students identify the most relevant material for their exams, saving time and ensuring a comprehensive understanding.

  • Moreover, these important questions often mimic the examination format and challenge levels, enabling students to gauge their preparedness and build confidence.

  • Triangles class 10 important questions are available in a compiled PDF form to download on any device and can be used to prepare for their exams.

  • The PDF will also ask as a model question paper and help students get an insight into what to expect in their actual board exam.

  • Triangles class 10 extra questions with solutions will focus on more theoretical-based questions.

  • They will act as revision notes to help you to revise the entire triangles chapter in a short span right before the maths exam.


Conclusion

Vedantu's Important Questions for CBSE Class 10 Maths Chapter 6 - Triangles offer a valuable resource for students seeking to excel in their mathematics studies. With a comprehensive selection of essential questions and in-depth explanations, Vedantu equips learners with the necessary tools to master the concept of triangles. By practising these questions, students can strengthen their problem-solving skills and gain confidence in tackling various triangle-related problems. Furthermore, Vedantu's user-friendly platform and expert faculty ensure a seamless learning experience. Whether preparing for exams or aiming for a deeper understanding of the subject, Vedantu's Important Questions provide an effective and convenient learning aid, empowering students to achieve academic success in mathematics.


Important Study Materials for Class 10 Maths Chapter 6 Triangles


CBSE Class 10 Maths Chapter-wise Important Questions

CBSE Class 10 Maths Chapter-wise Important Questions and Answers include topics from all chapters. They help students prepare well by focusing on important areas, making revision easier.



WhatsApp Banner

FAQs on CBSE Class 10 Maths Important Questions - Chapter 6 Triangles

1. What are the key topics covered in Chapter 6 - Triangles?

Chapter 6 of CBSE Class 10 Maths covers important topics such as:

  • Similarity of triangles

  • Criteria for similarity of triangles (AA, SAS, and SSS similarity criteria)

  • Proportionality theorems (Basic Proportionality Theorem or Thales' Theorem)

  • Properties of triangles (including the Pythagoras Theorem)

  • Applications of similarity and proportionality in solving problems.

2. Why should I Practise important questions from Chapter 6 - Triangles?

Practicing important questions helps reinforce the core concepts of similarity, proportionality, and triangle properties. It boosts your ability to apply these concepts in different problem scenarios, which is essential for performing well in exams.

3. What are the main criteria for similarity of triangles?

The main criteria for two triangles to be similar are:

  • AA (Angle-Angle) Criterion: If two angles of one triangle are equal to two angles of another triangle, then the triangles are similar.

  • SSS (Side-Side-Side) Criterion: If the corresponding sides of two triangles are in the same ratio, the triangles are similar.

  • SAS (Side-Angle-Side) Criterion: If one angle of a triangle is equal to the corresponding angle of another triangle and the sides including those angles are proportional, the triangles are similar.

4. What is the Basic Proportionality Theorem (Thales’ Theorem)?

The Basic Proportionality Theorem states that if a line is drawn parallel to one side of a triangle, it divides the other two sides proportionally. In other words, if a line is parallel to one side of a triangle, then it divides the other two sides in the same ratio.

5. How can practising important questions help in exams?

Practising important questions helps you understand the concepts deeply, increases your problem-solving speed, and builds your confidence. These questions often cover different variations and applications, ensuring you are prepared for any exam scenario.

6. What types of questions are included in the important questions for Chapter 6 - Triangles?

The important questions typically include:

  • Proofs based on similarity and proportionality.

  • Applications of the Basic Proportionality Theorem.

  • Problems involving the use of similarity criteria (AA, SAS, SSS).

  • Word problems related to the real-life application of triangles.

7. How do I use similarity of triangles in solving problems?

You can use the similarity of triangles by applying the relevant similarity criteria (AA, SSS, or SAS) and setting up proportions to solve for unknown values such as lengths or angles. This method is helpful in real-world applications like determining distances or heights.

8. Can practising important questions help me understand triangle properties better?

Yes, practising important questions helps in applying properties like the Pythagoras Theorem and other geometric properties of triangles in various contexts, reinforcing your understanding and improving your ability to solve problems.

9. What are some common types of word problems in this chapter?

Common word problems involve:

  • Finding the lengths of sides or angles using similarity of triangles.

  • Real-life applications like calculating the height of a building or the distance between two points using proportionality theorems.

10. Is there a PDF available for important questions in Chapter 6 - Triangles?

Yes, you can download a free PDF with important questions for Chapter 6 - Triangles. This PDF provides a collection of key problems to Practise, helping you reinforce the concepts and prepare effectively for the exam.