Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Important Solutions of Triangle Formulas for JEE

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

Important Solutions of Triangle Formulas for JEE

Triangle solutions are a crucial topic in both the JEE Main and JEE Advanced exams. The sine rule, cosine rule, tangent rule, and other equations and rules are included in this article. Exam questions frequently include questions based on the application of these formulae. Regularly reviewing these formulae will aid pupils in remembering them and solving problems quickly.


Below is the table of important solutions of triangle formulas for JEE


Important Solutions of Triangle Formulas For JEE

Name of the Formula

Formula

Sine Rule


\[\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}\]

Cosine Rule


\[cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}\]


\[cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}\]


\[cos C= \frac{a^{2} + b^{2} - c^{2}}{2ab}\]

Projection Rule


a  = b cosC + c CosB


b  = a cos C + c Cos A


c = a cos B + b Cos A

Tangent Rule OR Naiper’s Analogy

\[tan\left ( \frac{B - C}{2} \right ) = \left ( \frac{b - c}{b + c} \right ) cot \frac{A}{2}\]


\[tan\left ( \frac{C - A}{2} \right ) = \left ( \frac{c - a}{c + a} \right ) cot \frac{B}{2}\]


\[tan\left ( \frac{A - B}{2} \right ) = \left ( \frac{a - b}{a + b} \right ) cot \frac{C}{2}\]

Trignometric Half Angles

\[sin \frac{A}{2} = \sqrt{\frac{(s - b)(s - c)}{bc}}\]


\[sin \frac{B}{2} = \sqrt{\frac{(s - c)(s - c)}{ac}}\]


\[sin \frac{C}{2} = \sqrt{\frac{(s - a)(s - b)}{ab}}\]


\[cos \frac{A}{2} = \sqrt{\frac{s(s - a)}{bc}}\]


\[cos \frac{B}{2} = \sqrt{\frac{s(s - b)}{ac}}\]


\[cos \frac{C}{2} = \sqrt{\frac{s(s - c)}{ab}}\]


\[tan \frac{A}{2} = \sqrt{\frac{\Delta}{s(s - a)}}\]


\[tan \frac{B}{2} = \sqrt{\frac{\Delta}{s(s - b)}}\]


\[tan \frac{C}{2} = \sqrt{\frac{\Delta}{s(s - c)}}\]


Where, \[\Delta = \sqrt{s(s - a)(s - b)(s - c)}\]


\[s = \frac{a + b + c}{2}\]

Area of triangles 

\[\Delta_{A} = \frac{1}{2}bc sin A\]


\[\Delta_{B} = \frac{1}{2}ac sin B\]


\[\Delta_{C} = \frac{1}{2}ab sin C\]

M+n Rule

\[(m + n)~cot \theta = m cot\alpha - ncot\beta \]

Radius of Circumcirle

\[\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C} = 2R\]


Where, \[R = \frac{abc}{4 \Delta}\]

Appolonius Theorem

\[AB^{2} + AC^{2} = 2(AD^{2} + BD^{2})\]

Radius of the incircle

\[r = \frac{\Delta}{s}\]


\[r = (s - a) tan \frac{A}{2}\]


\[r = (s - b) tan \frac{B}{2}\]


\[r = (s - c) tan \frac{C}{2}\]


\[r = 4R(sin \frac{A}{2})(sin \frac{B}{2})(sin \frac{C}{2})\]


\[cos A + cos B + cos C = 1 + \frac{r}{R}\]

Radius og the Ex-circle

\[r_{1} = \frac{\Delta}{(s - a)}\]


\[r_{2} = \frac{\Delta}{(s - b)}\]


\[r_{3} = \frac{\Delta}{(s - c)}\]


\[r_{1} = s tan\frac{A}{(2)}\]


\[r_{2} = s tan\frac{B}{(2)}\]


\[r_{3} = s tan\frac{C}{(2)}\]


\[4R = r_{1} + r_{2} + r_{3} + r\]

Length of  angle bisectors

\[x_{A} = \frac{2bc}{b + c} cos\frac{A}{2}\]


\[x_{B} = \frac{2ac}{a + c} cos\frac{B}{2}\]


\[x_{C} = \frac{2ab}{a + b} cos\frac{C}{2}\]

Length of median

\[l_{A} = \frac{1}{2}\sqrt{2b^{2} + 2c^{2} - a^{2}}\]


\[l_{B} = \frac{1}{2}\sqrt{2a^{2} + 2c^{2} - b^{2}}\]


\[l_{C} = \frac{1}{2}\sqrt{2a^{2} + 2b^{2} - c^{2}}\]

Length of altitude

\[P_{a} = \frac{2\Delta}{a}\]


\[P_{b} = \frac{2\Delta}{b}\]


\[P_{c} = \frac{2\Delta}{c}\]

The distances of the special points from vertices and sides of the triangle

Circumcentre 

\[O_{a} = R cos A\]


\[O_{b} = R cos B\]


\[O_{c} = R cos C\]


Incentre

\[I_{A} = r~cosec \frac{A}{2}\]


\[I_{B} = r~cosec \frac{B}{2}\]


\[I_{C} = r~cosec \frac{C}{2}\]


Ex-centre

\[I_{1A} = r_{1}~cosec \frac{A}{2}\]


\[I_{1B} = r_{1}~sec \frac{B}{2}\]


\[I_{1C} = r_{1}~sec \frac{C}{2}\]


\[I_{2A} = r_{2}~sec \frac{A}{2}\]


\[I_{2B} = r_{2}~cosec \frac{B}{2}\]


\[I_{2C} = r_{2}~sec \frac{C}{2}\]


\[I_{3A} = r_{3}~sec \frac{A}{2}\]


\[I_{3B} = r_{3}~sec \frac{B}{2}\]


\[I_{3C} = r_{3}~cosec \frac{C}{2}\]


Centroid

\[G_{A} = \frac{1}{3} \sqrt{2b^{2} + 2c^{2}} +-a^{2}\]


\[G_{B} = \frac{1}{3} \sqrt{2a^{2} + 2c^{2}} - b^{2}\]


\[G_{C} = \frac{1}{3} \sqrt{2a^{2} + 2b^{2}} - c^{2}\]


Orthocentre

Distance of vertices

\[H_{A} = 2R cosA\]


\[H_{B} = 2R cosB\]


\[H_{C} = 2R cosC\]


Distance of sides

\[H_{A} = 2R cosB cosC\]


\[H_{B} = 2R cosA cosC\]


\[H_{C} = 2R cosA cosB\]


Solved Examples

Ex.1. In a triangle ABC, the sides are 16 cm, 9 cm, and 8 cm. Find the angle of a triangle for side a.

Solution:

Let a = 16, b = 9, c = 8

First, we want to calculate the s and

\[s = \frac{a + b + c}{2}\]

\[s = \frac{16 + 9 +8}{2}\]

s = 16.5

\[\Delta = \sqrt{s(s - a)(s - b)(s - c)}\]

\[\Delta = \sqrt{16.5(16.5 - 16)(16.5 - 9)(16.5 - 8)}\]

\[\Delta = \sqrt{16.5 \times 0.5 \times 7.5 \times 8.5}\]

\[\Delta = 22.9334\]

\[tan \frac{A}{2} = \frac{\Delta}{s(s - a)}\]

\[tan \frac{120}{2} = \frac{22.9334}{16.5(16.5 - 16)}\]

\[tan 60 = 2.7798\]


Ex.2. Find the length ‘a’ in figure 1, If ∠A = 60°, ∠C = 80° and side c = 5 cm.

Solution:

By using the sine rule we can solve this triangle.

\[\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sinC}\]

\[\frac{a}{sin A} = \frac{c}{sinC}\]

By using cross multiply,

\[a = \frac{sin A}{sin C} \times c\]

\[a = \frac{sin 60}{sin 80} \times 5\]

\[a = 0.8793\times5\]

\[a =4.3969~cm\]

FAQs on Important Solutions of Triangle Formulas for JEE

1. Is the solution of the triangle easy?

Trigonometry is a simple subject to learn and score well in the IIT JEE. Trigonometry for IIT JEE is as enjoyable to solve as calculus for IIT JEE. To begin, answer all of the trigonometry questions in your Vedantu NCERT Mathematics Important Questions for classes 12 and 11. Even learning and remembering the formulae will help you answer the questions.

2. What are the 7 types of a triangle?

There are seven types of triangles in the world are as follows, 

  • Equilateral Triangle

  • Right Isosceles Triangle

  • Obtuse Isosceles Triangle

  • Acute Isosceles Triangle

  • Right Scalene Triangle

  • Obtuse Scalene Triangle

  • Acute Scalene Triangle