Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

ICSE Class 10 Mathematics Chapter 21 - Trigonometric Identities Selina Solutions

ffImage
banner
widget title icon
Latest Updates

widget icon
Start Your Preparation Now :
ICSE Class 10 Date Sheet 2025

ICSE Class 10 Mathematics Chapter 21 Selina Concise Solutions - Free PDF Download

Updated ICSE Class 10 Mathematics Chapter 21 - Trigonometric Identities Selina Solutions are provided by Vedantu in a step by step method. Selina is the most famous publisher of ICSE textbooks. Studying these solutions by Selina Concise Mathematics Class 10 Solutions which are explained and solved by our subject matter experts will help you in preparing for ICSE exams. Concise Mathematics Class 10 ICSE Solutions can be easily downloaded in the given PDF format. These solutions for Class 10 ICSE will help you to score good marks in ICSE Exams 2024-25.

 

The updated solutions for Selina textbooks are created in accordance with the latest syllabus. These are provided by Vedantu in a chapter-wise manner to help the students get a thorough knowledge of all the fundamentals.

Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science

Access ICSE Selina Solutions for Grade 10 Mathematics Chapter 21 - Trigonometric Identities

Exercise - 21(A)


1. Prove the following identity:

secA1secA+1=1cosA1+cosA

Ans: Taking LHS -


LHS = sec A - 1sec A + 1


=1cosA11cosA+1                     [Weknowthat:cosA=1secA]


=1cosAcosA1+cosAcosA 


=1cosA1+cosA=RHS


LHS=RHS


Hence proved.


2. Prove the following identity:

1+sinA1sinA=cosecA+1cosecA1

Ans: Taking RHS -


RHS=cosecA+1cosecA1


=1sinA+11sinA1                     [Weknowthat:cosecA=1sinA]


=1+sinAsinA1sinAsinA 


=1+sinA1sinA=LHS


LHS=RHS


Hence proved.


3. Prove the following identity:

1tanA+cotA=cosAsinA

Ans: Taking LHS -


LHS=1tanA+cotA


=1sinAcosA+cosAsinA                   [Weknowthat:tanA=sinAcosA,cotA=cosAsinA]


=1sin2A+cos2AsinAcosA 


=sinAcosAsin2A+cos2A1 


=sinAcosA                  [Weknowthat:sin2A+cos2A=1]


=cosAsinA=RHS 


LHS=RHS


Hence proved.


4. Prove the following identity:

tanAcotA=12cos2AsinAcosA

Ans: Taking LHS -


LHS=tanAcotA


=sinAcosAcosAsinA               [Weknowthat:tanA=sinAcosA,cotA=cosAsinA]


=sin2Acos2AcosAsinA


=1cos2Acos2AcosAsinA             [Weknowthat:sin2A+cos2A=1]


=12cos2AsinAcosA=RHS


LHS=RHS


Hence proved.


5. Prove the following identity:

sin4Acos4A=2sin2A1

Ans: Taking LHS -


LHS=sin4Acos4A


=(sin2Acos2A)(sin2A+cos2A)         [a2b2=(ab)(a+b)]


=(sin2Acos2A)                        [Weknowthat:sin2A+cos2A=1]


=sin2A(1sin2A)                 [Weknowthat:sin2A+cos2A=1]


=2sin2A1=RHS


LHS=RHS


Hence proved.


6.  Prove the following identity:

(1tanA)2+(1+tanA)2=2sec2A

Ans: Taking LHS -


LHS=(1tanA)2+(1+tanA)2


=1+tan2A2tanA+1+tan2A+2tanA [(a±b)2=a2+b2±2ab]


=2+2tan2A


=2(1+tan2A)


=2sec2A=RHS                           [Weknowthat:1+tan2A=sec2A]


LHS=RHS


Hence proved.


7. Prove the following identity:

cosec4Acosec2A=cot4A+cot2A

Ans: Taking LHS -


LHS=cosec4Acosec2A


Taking cosec2A common,


=cosec2A(cosec2A1)


=cosec2A×cot2A                [Weknowthat:1+cot2A=cosec2A]


=(1+cot2A)×cot2A        [Weknowthat:1+cot2A=cosec2A]


=cot4A+cot2A=RHS


LHS=RHS


Hence proved.


8.  Prove the following identity:

secA(1sinA)(secA+tanA)=1

Ans: Taking LHS -


LHS=secA(1sinA)(secA+tanA)


=1cosA(1sinA)(1cosA+sinAcosA) [Weknow:tanA=sinAcosA,secA=1cosA]


=(1sinA)cosA(1+sinAcosA)


=(12sin2A)cos2A                                       [a2b2=(ab)(a+b)]


=(1sin2A)cos2A


=cos2Acos2A                                              [Weknowthat:sin2A+cos2A=1]


=1=RHS


LHS=RHS


Hence proved.


9. Prove the following identity:

cosecA(1+cosA)(cosecAcotA)=1

Ans: Taking LHS -


LHS=cosecA(1+cosA)(cosecAcotA)


=1sinA(1+cosA)(1sinAcosAsinA)               [cotA=cosAsinA,cosecA=1sinA]


=(1+cosA)sinA(1cosAsinA)


=(12cos2A)sin2A                                       [a2b2=(ab)(a+b)]


=(1cos2A)sin2A


=sin2Asin2A                                              [Weknowthat:sin2A+cos2A=1]


=1=RHS


LHS=RHS


Hence proved.


10. Prove the following identity:

sec2A+cosec2A=sec2A.cosec2A

Ans: Taking LHS -


LHS=1cos2A+1sin2A             [Weknowthat:secA=1cosA,cosecA=1sinA]


=sin2A+cos2Asin2A×cos2A


=1sin2A×cos2A                           [Weknowthat:sin2A+cos2A=1]


=sec2A.cosec2A=RHS      [Weknowthat:secA=1cosA,cosecA=1sinA]


LHS=RHS


Hence proved.


11. Prove the following identity:

(1+tan2A)cotAcosec2A=tanA

Ans: Taking LHS -


LHS=(1+tan2A)cotAcosec2A


=(sec2A)cotAcosec2A                                  [Weknowthat:1+tan2A=sec2A]


=1cos2A×cosAsinA1sin2A                         [Weknowthat:secA=1cosA,cosecA=1sinA]


=1cosA×1sinA1sin2A


=sinAcosA                                      [Weknowthat:tanA=sinAcosA]


=tanA=RHS 


LHS=RHS


Hence proved.


12.  Prove the following identity:

tan2Asin2A=tan2A.sin2A

Ans: Taking LHS -


LHS=sin2Acos2Asin2A1             [Weknowthat:tanA=sinAcosA]


=sin2Acos2A×sin2Acos2A


=sin2A(1cos2A)cos2A                          


=tan2A.(sin2A)=RHS  [Weknowthat:sin2A+cos2A=1,tanA=sinAcosA]


LHS=RHS


Hence proved.


13. Prove the following identity:

cot2Acos2A=cos2A.cot2A

Ans: Taking LHS -

 LHS=cos2Asin2Acos2A1             [Weknowthat:cotA=cosAsinA]


=cos2Acos2A×sin2Asin2A


=cos2A(1sin2A)sin2A                          


=cot2A.(cos2A)=RHS  [Weknowthat:sin2A+cos2A=1,cotA=cosAsinA]


LHS=RHS


Hence proved.


14. Prove the following identity:

(cosecA+sinA)(cosecAsinA)=cot2A+cos2A

Ans: Taking LHS -


LHS=(cosecA+sinA)(cosecAsinA)


=(cosec2Asin2A)                      [a2b2=(ab)(a+b)]


[Weknowthat:sin2A+cos2A=1&1+cot2A=cosec2A]


=1+cot2A(1cos2A) 


=cot2A+cos2A=RHS


LHS=RHS


Hence proved.


15. Prove the following identity:

(secAcosA)(secA+cosA)=tan2A+sin2A

Ans: Taking LHS -


 LHS=(secAcosA)(secA+cosA)


=(sec2Acos2A)                      [a2b2=(ab)(a+b)]


[Weknowthat:sin2A+cos2A=1&1+tan2A=sec2A]


=1+tan2A(1sin2A) 


=tan2A+sin2A=RHS


LHS=RHS


Hence proved.


16. Prove the following identity:

(cosA+sinA)2+(cosAsinA)2=2

Ans: Taking LHS -


LHS=(cosA+sinA)2(cosAsinA)2


=cos2A+sin2A+2cosA.sinA+cos2A+sin2A2cosA.sinA


[(a±b)2=a2+b2±2ab]


=2(cos2A+sin2A)                [Weknowthat:sin2A+cos2A=1]


=2=RHS


LHS=RHS


Hence proved.


17. Prove the following identity:

(cosecAsinA)(secAcosA)(tanA+cotA)=1

Ans: Taking LHS -


LHS=(cosecAsinA)(secAcosA)(tanA+cotA)


[Weknowthat:cotA=cosAsinA,tanA=sinAcosA,cosecA=1sinA,sec=1cosA]


=(1sinAsinA)(1cosAcosA)(sinAcosA+cosAsinA) 


=(1sin2AsinA)(1cos2AcosA)(sin2A+cos2AcosA.sinA)


=(cos2AsinA)(sin2AcosA)(1cosA.sinA)           [Weknowthat:sin2A+cos2A=1]


=1=RHS


LHS=RHS


Hence proved.


18. Prove the following identity:

1secA+tanA=secAtanA

Ans: Taking LHS -


LHS=1secA+tanA


=sec2Atan2AsecA+tanA                  [Weknowthat:1+tan2A=sec2A]


=(secAtanA)(secA+tanA)secA+tanA                [a2b2=(ab)(a+b)]


=secAtanA=RHS


LHS=RHS


Hence proved.


19.  Prove the following identity:

cosecA+cotA=1cosecAcotA

Ans: Taking RHS -


RHS=1cosecAcotA


=cosec2Acot2AcosecAcotA                  [Weknowthat:1+cot2A=cosec2A]


=(cosecAcotA)(cosecA+cotA)cosecAcotA                [a2b2=(ab)(a+b)]


=cosecA+cotA=LHS

LHS=RHS


Hence proved.


20. Prove the following identity:

secAtanAsecA+tanA=12secA.tanA+2tan2A

Ans: Taking LHS -


LHS=secAtanAsecA+tanA


=secAtanAsecA+tanA×secAtanAsecAtanA


=(secAtanA)2sec2Atan2A


[Weknowthat:sec2Atan2A=1&(a+b)2=a2+b2+2ab]


=sec2A+tan2A2secA.tanA   


[Weknowthat:sec2A=1+tan2A]


=1+tan2A+tan2A2secA.tanA 


=12secA.tanA+2tan2A=RHS


LHS=RHS


Hence proved.


21. Prove the following identity:

(sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A

Ans: Taking LHS -


LHS=(sinA+cosecA)2(cosA+secA)2


=sin2A+cosec2A+2cosecA.sinA+cos2A+sec2A+2cosA.secA


[(a+b)2=a2+b2+2ab]


=(cos2A+sin2A)+(cosec2A+sec2A)+2+2 [Weknowthat:cosecA.sinA=1&cosA.secA=1]


=2+2+1+(1+cot2A)+(1+tan2A)  


[Weknowthat:sec2A=1+tan2A&1+cot2A=cosec2A]


=7+tan2A+cot2A=RHS


LHS=RHS


Hence proved.


22. Prove the following identity:

sec2A.cosec2A=tan2A+cot2A+2

Ans: Taking LHS -


LHS=sec2A.cosec2A


=1cos2A×1sin2A


=sin2A+cos2Acos2A.sin2A                                [Weknowthat:sin2A+cos2A=1]


=sin2Acos2A.sin2A+cos2Acos2A.sin2A


=1cos2A+1sin2A


=sec2A+cosec2A               [Weknowthat:cosecA=1sinA,secA=1cosA]


=1+tan2A+1+cot2A       [sec2A=1+tan2A&1+cot2A=cosec2A]


=tan2A+cot2A+2=RHS


LHS=RHS


Hence proved.


23. Prove the following identity:

11+cosA+11cosA=2cosec2A

Ans: Taking LHS -


LHS=11+cosA+11cosA


=1cosA+1+cosA(1cosA)(1+cosA)


=212cos2A                              [a2b2=(ab)(a+b)]


=21cos2A 


=2sin2A                                    [Weknowthat:sin2A+cos2A=1]


=2cosec2A=RHS              [Weknowthat:cosecA=1sinA] 


LHS=RHS


Hence proved.


24. Prove the following identity:

11sinA+11+sinA=2sec2A

Ans: Taking LHS -


LHS=11sinA+11+sinA


=1+sinA+1sinA(1sinA)(1+sinA)


=212sin2A                              [a2b2=(ab)(a+b)]


=21sin2A 


=2cos2A                                    [Weknowthat:sin2A+cos2A=1]


=2sec2A=RHS              [Weknowthat:secA=1cosA] 


LHS=RHS


Hence proved.


25. Prove the following identity:

cosecAcosecA1+cosecAcosecA+1=2sec2A

Ans: Taking LHS -


LHS=cosecAcosecA1+cosecAcosecA+1


=cosecA×[1+cosecA+cosecA1(cosec1)(cosec+1)]


=2cosec2Acosec2A12                              [a2b2=(ab)(a+b)]


=2cosec2Acosec2A1 


=2cosec2Acot2A                                   [Weknowthat:1+cot2A=cosec2A]


=2×1sin2Acos2Asin2A


=2×1cos2A


=2sec2A=RHS              [Weknowthat:secA=1cosA] 


LHS=RHS


Hence proved.


26. Prove the following identity:

secAsecA+1+secAsecA1=2cosec2A

Ans: Taking LHS -


LHS=secAsecA+1+secAsecA1


=secA×[secA1+secA+1(sec+1)(sec1)]


=2sec2Asec2A12                              [a2b2=(ab)(a+b)]


=2sec2Asec2A1 


=2sec2Atan2A                                   [Weknowthat:1+tan2A=sec2A]


=2×1cos2Asin2Acos2A


=2×1sin2A


=2cosec2A=RHS              [Weknowthat:cosecA=1sinA] 


LHS=RHS


Hence proved.


27.  Prove the following identity:

1+cosA1cosA=tan2A(secA1)2

Ans: Taking LHS -


LHS=1+cosA1cosA


Divide N & D by cos A,


=1+cosAcosA1cosAcosA                          


=1cosA+11cosA1 


=secA+1secA1                            [Weknowthat:secA=1cosA]


=secA+1secA1×secA1secA1


=sec2A12(secA1)2                                   [a2b2=(ab)(a+b)]


=sec2A1(secA1)2


=tan2A(secA1)2=RHS                       [Weknowthat:1+tan2A=sec2A]


LHS=RHS


Hence proved.


28. Prove the following identity:

cot2A(cosecA+1)2=1sinA1+sinA

Ans: Taking RHS -


RHS=1sinA1+sinA


Divide N & D by sin A,


=1sinAsinA1+sinAsinA                          


=1sinA11sinA+1 


=cosecA1cosecA+1                            [Weknowthat:cosecA=1sinA]


=cosecA1cosecA+1×cosecA+1cosecA+1


=cosec2A12(cosecA+1)2                                   [a2b2=(ab)(a+b)]


=cosec2A1(cosecA+1)2


=cot2A(cosecA+1)2=LHS                       [Weknowthat:1+cot2A=cosec2A]


LHS=RHS


Hence proved.


29. Prove the following identity:

1+sinAcosA+cosA1+sinA=2secA

Ans: Taking LHS -


LHS=1+sinAcosA+cosA1+sinA


=(1+sinA)2+cos2AcosA(1+sinA)


=1+sin2A+2sinA+cos2AcosA(1+sinA)                    [(a+b)2=a2+b2+2ab]


=1+1+2sinAcosA(1+sinA)                                 [Weknowthat:sin2A+cos2A=1]


=2(1+sinA)cosA(1+sinA)


=2cosA


=2secA=RHS                            [Weknowthat:secA=1cosA]


LHS=RHS


Hence proved.


30. Prove the following identity:

1sinA1+sinA=(secAtanA)2

Ans: Taking LHS -


LHS=1sinA1+sinA


Divide N & D by cos A,

=1sinAcosA1+sinAcosA                          


=1cosAsinAcosA1cosA+sinAcosA 


=secAtanAsecA+tanA                            [Weknowthat:secA=1cosA,tanA=sinAcosA]


=secAtanAsecA+tanA×secAtanAsecAtanA


=(secAtanA)2sec2Atan2A                                   [a2b2=(ab)(a+b)]


=(secAtanA)21                       [Weknowthat:1+tan2A=sec2A]


=(secAtanA)2=RHS


LHS=RHS


Hence proved.


31.  Prove the following identity:

(cotAcosecA)2=1cosA1+cosA

Ans: Taking RHS -


Divide N & D by sin A,


=1cosAsinA1+cosAsinA                          


=1sinAcosAsinA1sinA+cosAsinA 


=cosecAcotAcosecA+cotA                        [Weknowthat:cosecA=1sinA,cotA=cosAsinA]


=cosecAcotAcosecA+cotA×cosecAcotAcosecAcotA


=(cosecAcotA)2cosec2Acot2A                                   [a2b2=(ab)(a+b)]


=[(cotAcosecA)]21                       [Weknowthat:1+cot2A=cosec2A]


=(cotAcosecA)2=LHS


LHS=RHS


Hence proved.


32. Prove the following identity:

cosecA1cosecA+1=(cosA1+sinA)2

Ans: Taking LHS -


LHS=1sinA11sinA+1              [Weknowthat:cosecA=1sinA]


=1sinAsinA1+sinAsinA


=1sinA1+sinA


=1sinA1+sinA×1+sinA1+sinA


=12sin2A(1+sinA)2                                     [a2b2=(ab)(a+b)]


=1sin2A(1+sinA)2


=cos2A(1+sinA)2                                         [Weknowthat:sin2A+cos2A=1]


=(cosA1+sinA)2=RHS


LHS=RHS


Hence proved.


33. Prove the following identity:

tan2Atan2B=sin2Asin2Bcos2A.cos2B

Ans: Taking LHS -


LHS=tan2Atan2B


=sin2Acos2Asin2Bcos2B                                       [Weknowthat:tanA=sinAcosA]


=sin2A.cos2Bsin2B.cos2Acos2A.cos2B


=sin2A(1sin2B)sin2B(1sin2A)cos2A.cos2B               [Weknowthat:sin2A+cos2A=1]


=sin2Asin2A.sin2Bsin2B+sin2A.sin2Bcos2A.cos2B


=sin2Asin2Bcos2A.cos2B=RHS


LHS=RHS


Hence proved.


34. Prove the following identity:

sinθ2sin3θ2cos3θcosθ=tanθ

Ans: Taking LHS -


LHS=sinθ2sin3θ2cos3θcosθ


=sinθcosθ[12sin2θ2cos2θ1]


=sinθcosθ[sin2θ+cos2θ2sin2θ2cos2θ(sin2θ+cos2θ)]                 [Weknowthat:sin2A+cos2A=1]


=tanθ[cos2θsin2θcos2θsin2θ]


=tanθ=RHS


LHS=RHS


Hence proved.


35. Prove the following identity:

sinA1+cosA=cosecAcotA

Ans: Taking LHS -


LHS=sinA1+cosA


=sinA1+cosA×1cosA1cosA


=sinA(1cosA)12cos2A                                 [a2b2=(ab)(a+b)]


=sinAsinA.cosA1cos2A


=sinA1cos2AsinA.cosA1cos2A


=sinAsin2AsinA.cosAsin2A                        [Weknowthat:sin2A+cos2A=1]


=1sinAcosAsinA


=cosecAcotA=RHS    [Weknowthat:cosecA=1sinA,cotA=cosAsinA]


LHS=RHS


Hence proved.


36. Prove the following identity:

cosA1sinA=secA+tanA

Ans: Taking LHS -


LHS=cosA1sinA


=cosA1sinA×1+sinA1+sinA


=cosA(1+sinA)12sin2A                                 [a2b2=(ab)(a+b)]


=cosA+sinA.cosA1sin2A


=cosA1sin2A+sinA.cosA1sin2A


=cosAcos2A+sinA.cosAcos2A                        [Weknowthat:sin2A+cos2A=1]


=1cosA+sinAcosA


=secA+tanA=RHS    [Weknowthat:secA=1cosA,tanA=sinAcosA]


LHS=RHS


Hence proved.


37. Prove the following identity:

sinA.tanA1cosA=1+secA

Ans: Taking LHS -


LHS=sinA.tanA1cosA


=sinA.sinAcosA1cosA                                 [Weknowthat:tanA=sinAcosA]


=sin2AcosA1cosA


=sin2AcosA(1cosA)


=1cos2AcosA(1cosA)                           [Weknowthat:sin2A+cos2A=1]


=(1cosA)(1+cosA)cosA(1cosA)


=(1+cosA)cosA


=1cosA+cosAcosA                          [Weknowthat:secA=1cosA]


=1+secA=RHS


LHS=RHS


Hence proved.


38. Prove the following identity:

(1+cotAcosecA)(1+tanA+secA)=2

Ans: Taking LHS -


LHS=(1+cotAcosecA)(1+tanA+secA)


=(1+cosAsinA1sinA)(1+sinAcosA+1cosA) 


[Weknowthat:secA=1cosA,tanA=sinAcosA,cosecA=1sinA,cot=cosAsinA]


=(sin A+cos A1sin A)(cos A+sin A+1cos A)


=cos A(sin A+cos A1)+sin A(sin A+cos A1)+sin A+cos A1sin A.cos A


=cosAsinA+cos2A cosA+sin2A+sinAcosAsinA+sinA+cosA1sinA.cosA


=cos A.sin Acos A+1+sin A.cos Asin A+sin A+cos A1sin A.cos A


 [Weknowthat:sin2A+cos2A=1]


=2cos A.sin Asin A.cos A 


=2=RHS


LHS=RHS


Hence proved.


39. Prove the following identity:

1+sinA1sinA=secA+tanA

Ans: Taking LHS -


LHS=1+sinA1sinA


=1+sinA1sinA×1+sinA1+sinA


=(1+sinA)212sin2A                       [a2b2=(ab)(a+b)]


=(1+sinA)2cos2A                     [Weknowthat:sin2A+cos2A=1]


=1+sinAcosA


=1cosA+sinAcosA                      [Weknowthat:secA=1cosA,tanA=sinAcosA]


=secA+tanA=RHS


LHS=RHS


Hence proved.


40. Prove the following identity:

1cosA1+cosA=cosecAcotA

Ans: Taking LHS -


LHS=1cosA1+cosA


=1cosA1+cosA×1cosA1cosA


=(1cosA)212cos2A                       [a2b2=(ab)(a+b)]


=(1cosA)2sin2A                     [Weknowthat:sin2A+cos2A=1]


=1cosAsinA


=1sinAcosAsinA                    [Weknowthat:cosecA=1sinA,cotA=cosAsinA]


=cosecAcotA=RHS


LHS=RHS


Hence proved.


41. Prove the following identity:

1cosA1+cosA=sinA1+cosA

Ans: Taking LHS -


LHS=1cosA1+cosA


=1cosA1+cosA×1+cosA1+cosA


=12cos2A(1+cosA)2                       [a2b2=(ab)(a+b)]


=sin2A(1+cosA)2                     [Weknowthat:sin2A+cos2A=1]


=sinA1+cosA=RHS


LHS=RHS


Hence proved.


42. Prove the following identity:

1sinA1+sinA=cosA1+sinA

Ans: Taking LHS -


LHS=1sinA1+sinA


=1sinA1+sinA×1+sinA1+sinA


=12sin2A(1+sinA)2                                 [a2b2=(ab)(a+b)]


=cos2A(1+sinA)2                               [Weknowthat:sin2A+cos2A=1]


=cosA1+sinA=RHS


LHS=RHS


Hence proved.


43. Prove the following identity:

1cos2A1+sinA=sinA

Ans: Taking LHS -


LHS=1cos2A1+sinA


=112sin2A1+sinA                                    [Weknowthat:sin2A+cos2A=1]


=1[(1sinA)(1+sinA)1+sinA]                   [a2b2=(ab)(a+b)]


=1[1sinA]


=sinA=RHS


LHS=RHS


Hence proved.


44.  Prove the following identity:

1sinA+cosA+1sinAcosA=2sinA12cos2A

Ans: Taking LHS -


LHS=1sinA+cosA+1sinAcosA


=sinAcosA+sinA+cosA(sinA+cosA)(sinAcosA)                                   


=2sinA(sin2Acos2A)                      [a2b2=(ab)(a+b)]


=2sinA(1cos2Acos2A)                  [Weknowthat:sin2A+cos2A=1]


=2sinA12cos2A=RHS


LHS=RHS


Hence proved.


45. Prove the following identity:

sinA+cosAsinAcosA+sinAcosAsinA+cosA=22sin2A1

Ans: Taking LHS -


LHS=sinA+cosAsinAcosA+sinAcosAsinA+cosA


=(sinA+cosA)2+(sinAcosA)2(sinA+cosA)(sinAcosA)                                   


=sin2A+cos2A+2sinA.cosA+sin2A+cos2A2sinA.cosA(sin2Acos2A)  [a2b2=(ab)(a+b)]


=2(sin2A+cos2A)(sin2A(1sin2A)                                        [Weknowthat:sin2A+cos2A=1]


=22sin2A1=RHS                                     [Weknowthat:sin2A+cos2A=1]


LHS=RHS


Hence proved.


46. Prove the following identity:

cotA+cosecA1cotAcosecA+1=1+cosAsinA

Ans: Taking LHS -

LHS=cotA+cosecA1cotAcosecA+1


=[cotA+cosecA(cosec2Acot2A)cotAcosecA+1]             [Weknowthat:1+cot2A=cosec2A]


=[cotA+cosecA(cosecAcotA)(cotA+cosecA)cotAcosecA+1]           [a2b2=(ab)(a+b)]


=[(cotA+cosecA)(1cosecA+cotA)cotAcosecA+1]  


=cotA+cosecA


=cosAsinA+1sinA                         [Weknowthat:cosecA=1sinA,cotA=cosAsinA]


=1+cosAsinA=RHS


LHS=RHS


Hence proved.


47. Prove the following identity:

1+sinAcosecAcotA1sinAcosecA+cotA=2(1+cotA)

Ans: Taking LHS -


LHS=1+sinAcosecAcotA1sinAcosecA+cotA


=(1+sinA)(cosecA+cotA)(1sinA)(cosecAcotA)(cosecAcotA)(cosecA+cotA)


=cosecA+cotA+sinAcosecA+sinAcotAcosecA+cotA+sinAcosecAsinAcotA(cosecAcotA)(cosecA+cotA)=2(cotA+sinAcosecA)(cosec2Acot2A)                                            [a2b2=(ab)(a+b)]


=2(cotA+1)1          [Weknowthat:1+cot2A=cosec2A&cosecA=1sinA]


=2(1+cotA)=RHS


LHS=RHS


Hence proved.


48. Prove the following identity:

cosθ.cotθ1+sinθ=cosecθ1

Ans: Taking LHS -


LHS=cosθ.cotθ1+sinθ


=cosθ.cosθsinθ1+sinθ                                                  [Weknowthat:cotA=cosAsinA]


=cos2θsinθ1+sinθ


=cos2θsinθ1+sinθ×1sinθ1sinθ


=cos2θsinθ×(1sinθ)12sin2θ                                            [a2b2=(ab)(a+b)]


=cos2θsinθ×(1sinθ)cos2θ                                           [Weknowthat:sin2A+cos2A=1]


=1sinθsinθ        


=cosecθ1=RHS                              [Weknowthat:cosecA=1sinA]


LHS=RHS


Hence proved.


49. Prove the following identity:

sinθ.tanθ1cosθ=secθ+1

Ans: Taking LHS -


LHS=sinθ.tanθ1cosθ


=sinθ.sinθcosθ1cosθ                                                  [Weknowthat:tanA=sinAcosA]


=sin2θcosθ1cosθ


=sin2θcosθ1cosθ×1+cosθ1+cosθ


=sin2θcosθ×(1+cosθ)12cos2θ                                            [a2b2=(ab)(a+b)]


=sin2θcosθ×(1+cosθ)sin2θ                                         [Weknowthat:sin2A+cos2A=1]


=1+cosθcosθ        


=secθ+1=RHS                              [Weknowthat:secA=1cosA]


LHS=RHS


Hence proved.


Exercise - 21(B)


1. Prove that:

i) cosA1tanA+sinA1cotA=sinA+cosA

Ans: Taking LHS -


LHS=cosA1tanA+sinA1cotA


=cosA1sinAcosA+sinA1cosAsinA                 [Weknowthat:tanA=sinAcosA,cotA=cosAsinA]


=cosAcosAsinAcosA+sinAsinAcosAsinA


=cos2AcosAsinA+sin2AsinAcosA


=cos2AcosAsinAsin2AcosAsinA


=cos2Asin2AcosAsinA


=(cosAsinA)(cosA+sinA)cosAsinA                                       [a2b2=(ab)(a+b)]


=cosA+sinA=RHS


LHS=RHS


Hence proved.

ii) cos3A+sin3AcosA+sinA+cos3Asin3AcosAsinA=2

Ans: Taking LHS -


LHS=cos3A+sin3AcosA+sinA+cos3Asin3AcosAsinA


=(cos3A+sin3A)(cosAsinA)+(cos3Asin3A)(cosA+sinA)(cosA+sinA)(cosAsinA)


=(cos3A+sin3A)(cosAsinA)+(cos3Asin3A)(cosA+sinA)cos2Asin2A      [a2b2=(ab)(a+b)]


=(cos4A+sin3A.cosAcos3A.sinAsin4A)+(cos4Asin3A.cosA+cos3A.sinAsin4A)cos2Asin2A=2(cos4Asin4A)cos2Asin2A


=2(cos2Asin2A)(cos2A+sin2A)cos2Asin2A                        [a2b2=(ab)(a+b)]


=2(cos2A+sin2A)                         [Weknowthat:sin2A+cos2A=1]


=2=RHS


LHS=RHS


Hence proved.


iii) tanA1cotA+cotA1tanA=secA.cosecA+1

Ans: Taking LHS -


LHS=tanA1cotA+cotA1tanA


=tanA11tanA+1tanA1tanA                                     [Weknowthat:cotA=1tanA]


=tan2AtanA1+1tanA(1tanA)


=tan2AtanA11tanA(tanA1)


=tan3A1tanA(tanA1)


=(tanA1)(tan2A+1+tanA)tanA(tanA1)                        [a3b3=(ab)(a2+b2+ab)]


=tan2A+1+tanAtanA


=sec2A+tanAtanA                                      [Weknowthat:1+tan2A=sec2A]


=sec2AtanA+1


=1cos2AsinAcosA+1                              [Weknowthat:secA=1cosA,tanA=sinAcosA]


=1sinA.cosA+1


=cosecA.secA+1=RHS                     [Weknowthat:cosecA=1sinA]


LHS=RHS


Hence proved.


iv) (tanA+1cosA)2+(tanA1cosA)2=2(1+sin2A1sin2A)

Ans: Taking LHS -


LHS=(tanA+1cosA)2+(tanA1cosA)2


=(sinAcosA+1cosA)2+(sinAcosA1cosA)2              [Weknowthat:tanA=sinAcosA]


=(sinA+1cosA)2+(sinA1cosA)2


=(sinA+1)2+(sinA1)2cos2A


=sin2A+1+2sinA+sin2A+12sinAcos2A                         [(a±b)2=a2+b2±2ab]


=2(1+sin2A)1sin2A                                              [Weknowthat:sin2A+cos2A=1]


=2(1+sin2A1sin2A)=RHS


LHS=RHS


Hence proved.


v) 2sin2A+cos4A=1+sin4A

Ans: Taking LHS -


LHS=2sin2A+cos4A


=2sin2A+(1sin2A)2                         [Weknowthat:sin2A+cos2A=1]


=2sin2A+1+sin4A2sin2A                        [(ab)2=a2+b22ab]


=1+sin4A=RHS


LHS=RHS


Hence proved.


vi) sinAsinBcosA+cosB+cosAcosBsinA+sinB=0

Ans: Taking LHS -


LHS=sinAsinBcosA+cosB+cosAcosBsinA+sinB


=(sinAsinB)(sinA+sinB)+(cosAcosB)(cosA+cosB)(cosA+cosB)(sinA+sinB)


=(sin2Asin2B)+(cos2Acos2B)(cosA+cosB)(sinA+sinB)                                    [a2b2=(ab)(a+b)]


=(sin2A+cos2A)(sin2B+cos2B)(cosA+cosB)(sinA+sinB)         


=11(cosA+cosB)(sinA+sinB)                            [Weknowthat:sin2A+cos2A=1]


=0(cosA+cosB)(sinA+sinB)


=0=RHS


LHS=RHS


Hence proved.


vii) (cosecAsinA)(secAcosA)=1tanA+cotA

Ans: Taking LHS -

LHS=(cosecAsinA)(secAcosA)


=(1sinAsinA)(1cosAcosA)              [cosecA=1sinA,secA=1cosA]


=(1sin2AsinA)(1cos2AcosA)


=(cos2AsinA)(sin2AcosA)


=sinA.cosA


Taking RHS - 


RHS=1tanA+cotA


=1sinAcosA+cosAsinA                       [Weknowthat:cotA=cosAsinA,tanA=sinAcosA]


=1sin2A+cos2AcosA×sinA


=cosA×sinAsin2A+cos2A                                       


=sinA.cosA                                       [Weknowthat:sin2A+cos2A=1]


LHS=RHS


Hence proved.


viii) (1+tanA.tanB)2+(tanAtanB)2=sec2A.sec2B

Ans: Taking LHS -


LHS=(1+tanA.tanB)2+(tanAtanB)2


=1+tan2A.tan2B+2tanA.tanB+tan2A+tan2B2tanA.tanB


[(a±b)2=a2+b2±2ab]


=1+tan2A+tan2A.tan2B+tan2B


=sec2A+tan2B(tan2A+1)                 [Weknowthat:1+tan2A=sec2A]


=sec2A+tan2B(sec2A)                          [Weknowthat:1+tan2A=sec2A]


=sec2A(1+tan2B)


=sec2A.sec2B=RHS                            [Weknowthat:1+tan2A=sec2A]


LHS=RHS


Hence proved.


ix) 1cosA+sinA1+1cosA+sinA+1=cosecA+secA

Ans: Taking LHS -


LHS=1cosA+sinA1+1cosA+sinA+1


=cosA+sinA1+cosA+sinA+1(cosA+sinA1)(cosA+sinA+1)


=2(cosA+sinA)(cosA+sinA)212                                                     [a2b2=(ab)(a+b)]


=2(cosA+sinA)sin2A+cos2A+2sinA.cosA1                                     [(a+b)2=a2+b2+2ab]


=2(cosA+sinA)1+2sinA.cosA1


=(cosA+sinA)sinA.cosA


=(cosA)sinA.cosA+(sinA)sinA.cosA


=1sinA+1cosA


=cosecA+secA=RHS     [Weknowthat:cosecA=1sinA,secA=1cosA]


LHS=RHS


Hence proved.


2.If x.cosA+y.sinA=m and x.sinAy.cosA=n, then prove that: x2+y2=m2+n2

Ans: Taking RHS -


RHS=m2+n2


=(x.cos A+y.sin A)2+(x.sin Ay.cos A)2


=x2.cos2A+y2sin2A+2xy.cos A.sin A+x2.sin2A+y2cos2A2xy.cos A.sin A               [(a±b)2=a2+b2±2ab]


=x2(cos2A+sin2A)+y2(cos2A+sin2A)


=x2+y2=LHS                                       [Weknowthat:sin2A+cos2A=1]


LHS=RHS


Hence proved.


3. If m=a.secA+b.tanA and n=a.tanA+b.secA, then prove that: m2n2=a2b2

Ans: Taking LHS -

LHS=m2n2


=(a.secA+b.tanA)2(a.tanA+b.secA)2


=a2.sec2A+b2tan2A+2ab.sec A.tan Aa2.tan2Ab2sec22ab.sec A.tan A


                                                                                  [(a+b)2=a2+b2+2ab]


=a2(sec2Atan2A)b2(sec2Atan2A)


=a2b2=RHS                                       [Weknowthat:1+tan2A=sec2A]


LHS=RHS


Hence proved.


4. If x=rsinAcosB,y=rsinAsinB and z=rcosA, then prove that: x2+y2+z2=r2

Ans: Taking LHS -


LHS=x2+y2+z2


=(rsinAcosB)2+(rsinAsinB)2+(rcosA)2


=(rsinA)2(cos2B+sin2B)+(rcosA)2


                                                                     [Weknowthat:sin2A+cos2A=1]


=(rsinA)2+(rcosA)2


=r2(sin2A+cos2A)                                  [Weknowthat:sin2A+cos2A=1]


=r2=RHS


LHS=RHS


Hence proved.


5. If sinA+cosA=m and secA+cosecA=n, show that: n(m21)=2m

Ans: Taking LHS -


LHS=n(m21)


=(sec\;A+cosec A)[(sin A+cos A)21]


=(sec\;A+cosec A)[sin2A+cos2A+2cos A.sin A1]


[(a+b)2=a2+b2+2ab]


=(sec\;A+cosec\;A)[1+2cos A.sin A1] [Weknowthat:sin2A+cos2A=1]


=(sec A+cosec A)[2cos A.sin A]


=(sec A)[2cos A.sin A]+cosec A[2cos A.sin A]


=[2sin A]+[2cos A]            [We know:cos A.sec A=1,cosec A.sin A=1]


=2[sin A+cos A]


=2m=RHS


LHS=RHS


Hence proved.


6. If x=rcosAcosB,y=rcosAsinB and z=rsinA, show that: x2+y2+z2=r2

Ans: Taking LHS -


LHS=x2+y2+z2


=(rcosAcosB)2+(rcosAsinB)2+(rsinA)2


=(rcosA)2(cos2B+sin2B)+(rsinA)2 [Weknowthat:sin2A+cos2A=1]


=(rcosA)2+(rsinA)2


=r2(cos2A+sin2A)                                  [Weknowthat:sin2A+cos2A=1]


=r2=RHS


LHS=RHS


Hence proved.


7. If cosAcosB=m and cosAsinB=n, show that: (m2+n2)cos2B=n2.

Ans: Taking LHS -


LHS=(m2+n2)cos2B


=[(cos Acos B)2+(cos Asin B)2]cos2B


=[(1cos B)2+(1sin B)2]cos2A.cos2B


=[(sin2B+cos2Bcos2B.sin2B)]cos2A.cos2B


=[(1cos2B.sin2B)]cos2A.cos2B              [Weknowthat:sin2A+cos2A=1]


=[(1sin2B)]cos2A


=(cos Asin\;B)2=n2=RHS


LHS=RHS


Hence proved.


Exercise - 21(C)


1. Show that: 

i) tan10tan15tan75tan80=1

Ans: Taking LHS -

LHS=tan10tan15tan75tan80


=tan(9080)tan(9075)tan75tan80


=cot80cot75tan75tan80     [We know that:tan(90A)=cot A]


=1=RHS                                             [We know that:tan A.cot A=1]             


LHS=RHS


Hence proved.


ii) sin42sec48+cos42cosec48=2

Ans: Taking LHS -


LHS=sin42sec48+cos42cosec48


=sin42sec(9042)+cos42cosec(9042)


=sin42cosec42+cos42sec42


[We know that:sec(90A)=cosec A,cosec(90A)=sec A]


=1+1                       [We know that:sin A.cosec A=1,cos A.sec A=1]  


=2=RHS                                                        


LHS=RHS


Hence proved.


iii) sin26sec64+cos26cosec64=1

Ans: Taking LHS -

LHS=sin26sec64+cos26cosec64


=sin26sec(9026)+cos26cosec(9026)


=sin26cosec(26)+cos26sec(26)


[We know that:sec(90A)=cosec A,cosec(90A)=sec A]


=sin226+cos226           [We know that:cosec A=1sin A,sec A=1cos A]  


=1=RHS                                                  [Weknowthat:sin2A+cos2A=1]                      


LHS=RHS


Hence proved.


2. Express each of the following in terms of angles between 0and 45:


i) sin59+tan63

Ans: sin59+tan63=sin(9031)+tan(9027)


[We know that:sin(90A)=cos A,tan(90A)=cot A]


sin59+tan63=cos31+cot27


ii) cosec68+cot72

Ans: cosec68+cot72=cosec(9022)+cot(9018)


[We know that:cosec(90A)=sec A,cot(90A)=tan A]


cosec68+cot72=sec22+tan18


iii) cos74+sec67

Ans: cos74+sec67=cos(9016)+sec(9023)


[We know that:cos(90A)=sin A,sec(90A)=cosec A]


cos74+sec67=sin16+cosec23


3. Show that:

i) sinAsin(90A)+cosAcos(90A)=secA.cosecA

Ans: Taking LHS -

LHS=sin Asin(90A)+cos Acos(90A)


=sin Acos A+cos Asin A                       [cos(90A)=sin A,sin(90A)=cos A]


=sin2A+cos2Acos A.sin A


=1cos A.sin A                                                  [Weknowthat:sin2A+cos2A=1]


=secA.cosecA=RHS      [We know that:cosec A=1sin A,sec A=1cos A]


LHS=RHS


Hence proved.


ii) sinAcosAsinAcos(90A)cosAsec(90A)sinAsin(90A)cosAcosec(90A)=0

Ans: Taking LHS -


LHS=sin A. cos Asin A.cos(90A)cos Asec(90A)sin A sin(90A)cos Acosec(90A)


=sin A.cos Asin A sin A cos Acosec Asin A.cos A cos Asec A [We know that:cos(90A)=sin A,sin(90A)=cos A]


[We know that:cosec(90A)=sec A,sec(90A)=cosec A]


=sin A.cos Asin3A cos Acos3A sin A


[We know that:cosecA=1sinA,sec A=1cosA]


=sinA.cosAsinA.cosA(sin2A+cos2A)


[Weknowthat:sin2A+cos2A=1]


=sinA.cosAsinA.cosA(1)


=sinA.cosAsinA.cosA


=0=RHS


LHS=RHS


Hence proved.


4. For triangle ABC, show that:

i) sin(A+B2)=cosC2

Ans: sin(A+B2)


We know that for a ΔABC,


A+B+C=180


A+B+C2=1802


A+B+C2=90


A+B2=90C2


sin(A+B2)=sin(90C2)


sin(A+B2)=cos(C2)             [We know that:sin(90A)=cos A]


Hence proved.


ii) tan(B+C2)=cosA2

Ans: tan(B+C2)


We know that for a \Delta ABC,

A+B+C=180


A+B+C2=1802


A+B+C2 = 90o


B+C2= 90o - A2


tan(B+C2)=tan(90A2)


tan(B+C2)=cot(A2)             [We know that:tan(90A)=cot A]


Hence proved.


5. Evaluate:

i) 3sin72cos18sec32cosec58

Ans: 3sin72cos18sec32cosec58


=3sin72cos(9072)sec32cosec(9032)


[We know that:cos(90A)=sinA,cosec(90A)=secA]


=3sin72sin72sec32sec32 


=3×11


=31


=2


ii) 3cos80cosec10+2sin59sec31

Ans: 3cos80cosec10+2sin59sec31


=3cos80sin10+2sin59cos31           [We know that:cosecA=1sin A,secA=1cosA]


=3cos(9010)sin10+2sin(9031)cos31 [We know that:cos(90A)=sinA,sin(90A)=cosA]


=3sin10sin10+2cos31cos31 


=3×1+(2×1)


=3+2


=5


iii) sin80cos10+sin59sec31

Ans: sin80cos10+sin59sec31


=sin80cos(9080)+sin59cos31                                       [We know that:sec A=1cos A]


=sin80sin80+sin59cos(9059)                        [We know that:cos(90A)=sin A]


=1+sin59sin59                                         [We know that:cos(90A)=sin A]


=1+1


=2


iv) tan(55A)cot(35+A)

Ans: tan(55A)cot(35+A)


=tan[90(35+A)]cot(35+A)


=cot(35+A)cot(35+A)     [We know that:tan(90A)=cot A]


=0


v) cosec(65+A)sec(25A)

Ans: cosec(65+A)sec(25A)


=cosec[90(25A)]sec(25A)


=sec(25A)sec(25A)  [We know that:cosec(90A)=sec A]


=0


vi) 2tan57cot33cot70tan202cos45

Ans: 2tan57cot33cot70tan202cos45


=2tan57cot(9057)cot(9020)tan202×12       [We know that:cos45=12]


=2tan57tan57tan20tan201                     [We know that:cot(90A)=tan A]


=2×111


=0


vii) cot241tan2492sin275cos215

Ans: cot241tan2492sin275cos215


=cot241tan2(9041)2sin275cos2(9075)     


=cot241cot2412sin275sin275     [We know that:tan(90A)=cot A,cos(90A)=sin A]


=1(2×1)


=1


viii) cos70sin20+cos59sin318sin230

Ans: cos70sin20+cos59sin318sin230


=cos70sin(9070)+cos59sin(9059)8(12)2               [We know that:sin30=12]


=cos70cos70+cos59cos598×14              [We know that:sin(90A)=cos A]


=1+12


=0


ix) 14sin30+6cos605tan45

Ans: 14sin30+6cos605tan45


=(14×12)+(6×12)(5×1)               [We know that:sin30=cos60=12,tan45=1]


=7+35


=5


6. A triangle ABC is right angled at B; find the value of secA.cosecCtanA.cotCsinB.

Ans: secA.cosecCtanA.cotCsinB


Since, triangle ABC is right angle triangle and right angled at B.


B=90


We know that A+B+C=180


A+C=90


secA.cosecCtanA.cotCsinB=sec(90C).cosecCtan(90C).cotCsin90


secA.cosecCtanA.cotCsinB=cosecC.cosecCcotC.cotC1


[We know that:sec(90A)=cosec A,tan(90A)=cot A]


secA.cosecCtanA.cotCsinB=cosec2Ccot2C


secA.cosecCtanA.cotCsinB=1               [Weknowthat:cosec2Ccot2C=1]


7. Find ( in each case, given below) the value of x if:

i) sinx=sin60.cos30cos60.sin30

Ans: sinx=sin60.cos30cos60.sin30


[We know that:sin30=cos60=12,sin60=cos30=32]


sinx=(32).(32)(12).(12)


sinx=(34)(14)


sinx=(12)


We know that [sin30=12]


sinx=sin30


x=30


ii) sinx=sin60.cos30+cos60.sin30

Ans: sinx=sin60.cos30+cos60.sin30


[We know that:sin30=cos60=12,sin60=cos30=32]


sinx=(32).(32)+(12).(12)


sinx=(34)+(14)


sinx=1


We know that [sin90=1]


sinx=sin90


x=90


iii) cosx=cos60.cos30sin60.sin30

Ans: cosx=cos60.cos30sin60.sin30


[We know that:sin30=cos60=12,sin60=cos30=32]


cosx=(12).(32)(32).(12)


cosx=(34)(34)


cosx=0


We know that [cos90=0]


cosx=cos90


x=90


iv) tanx=tan60tan301+tan60.tan30

Ans: tanx=tan60tan301+tan60.tan30


[We know that:tan60=3,tan30=13]


tanx=3131+3.13


tanx=3131+1


tanx=232


tanx=13


We know that [tan30=13]


tanx=tan30


x=30


v) sin2x=2sin45.cos45


Ans: sin2x=2sin45.cos45


[We know that:sin45=cos45=12]


sin2x=2×12×12


sin2x=2×12


sin2x=1


We know that [sin90=1]


sin2x=sin90


2x=90


x=45


vi) sin3x=2sin30.cos30

Ans: sin3x=2sin30.cos30


[We know that:sin30=12,cos30=32]


sin3x=2×12×32


sin3x=32


We know that [sin60=32]


sin3x=sin60


3x=60


x=20


vii) cos(2x6)=cos230cos260

Ans: cos(2x6)=cos230cos260


[We know that:cos30=32,cos60=12]


cos(2x6)=(32)2(12)2


cos(2x6)=(34)(14)


cos(2x6)=(12)


We know that [cos60=12]


cos(2x6)=cos60


2x6=60


2x=66


x=33


8. In each case, given below, find the value of angle A, where 0A90.

i) sin(903A).cosec42=1

Ans: sin(903A).cosec42=1


[We know that: sinA.cosecA=1]


So, sin(903A)=sin42


(903A)=42


3A=9042


3A=48


A=16


ii) cos(90A).sec77=1

Ans: cos(90A).sec77=1


[We know that: cosA.secA=1]


So, cos(90A)=cos77


(90A)=77


A=9077


A=13


9. Prove that: 

i) cos(90θ)cosθcotθ=1cos2θ

Ans: Taking LHS -


LHS=cos(90θ)cosθcotθ


=sinθ.cosθcosθsinθ                   [We know that:cos(90A)=sin A,cot A=cos Asin A]


=sin2θ


=1cos2θ=RHS                                  [Weknowthat:sin2A+cos2A=1]


LHS=RHS


Hence proved.


ii) sinθ.sin(90θ)cot(90θ)=1sin2θ

Ans: Taking LHS -


LHS=sinθ.sin(90θ)cot(90θ)


=sinθ.cosθtanθ           [We know:sin(90A)=cosA,cot(90A)=tan A]


=sinθ.cosθsinθcosθ                                                            [We know that:tan A=sin Acos A]


=cos2θ


=1sin2θ=RHS                                  [Weknowthat:sin2A+cos2A=1]


LHS=RHS


Hence proved.


10. Evaluate: 

sin35cos55+cos35sin55cosec210tan280

Ans: sin35cos55+cos35sin55cosec210tan280


=sin(9055)cos55+cos(9055)sin55cosec210tan2(9010)


[sin(90A)=cos A,cos(90A)=sin A,tan(90A)=cot A]


=cos55.cos55+sin55.sin55cosec210cot210


=cos255+sin255cosec210cot210


[Weknowthat:sin2A+cos2A=1&cosec2Acot2A=1]


=11=1


11. Evaluate: 

sin234+sin256+2tan18.tan72cot230

Ans: sin234+sin256+2tan18.tan72cot230


=sin2(9056)+sin256+2tan18.tan(9018)cot230


[sin(90A)=cos A,tan(90A)=cot A,cot30=3]


=cos256+sin256+2tan18.cot18(3)2


[Weknowthat:sin2A+cos2A=1&tanA.cotA=1]


=1+(2×1)3


=0


12. Evaluate: 

cosec257tan233+cos44.cosec462cos45tan260

Ans: cosec257tan233+cos44.cosec462cos45tan260


[Weknowthat:cos45=12,tan60=3]


=cosec257tan2(9057)+cos44.cosec(9044)2×12(3)2


[cosec(90A)=sec A,tan(90A)=cot A]


=cosec257cot257+cos44.sec4413


[Weknowthat:cosec2Acot2A=1&cosA.secA=1]


=1+113


=2


Exercise - 21(D)


1. Use table to find sine of:

i) 21

Ans: sin21


According to the natural sine table,


sin21=0.3584


ii) 3442

Ans: sin3442


According to the natural sine table,


sin3442'=0.5693


iii) 4732

Ans: sin4732


According to the natural sine table,


sin4732'=sin(4730'+2')


sin4732'=0.7373+0.0004


sin4732'=0.7377


iv) 6257

Ans: sin6257


According to the natural sine table,


sin6257'=sin(6254'+3')


sin6257'=0.8902+0.0004


sin6257'=0.8906


v) 1020+2045

Ans: sin(1020+2045)


According to the natural sine table,


sin(1020'+2045')=sin(3065')


sin(1020'+2045')=sin(315')


sin(1020'+2045')=0.5150+0.0012


sin(1020'+2045')=0.5162


2. Use table to find cosine of:

i) 24

Ans: cos24


According to the natural cosine table,


cos24'=0.99940.0001


cos24'=0.9993


ii) 812

Ans: cos812


According to the natural cosine table,


cos812'=0.9898


iii) 2632

Ans: cos2632


According to the natural cosine table,


cos2632'=cos(2630'+2')


cos2632'=0.89490.0003


cos2632'=0.8946


iv) 6541

Ans: cos6541


According to the natural cosine table,


cos6541'=cos(6536'+5')


cos6541'=0.41310.0013


cos6541'=0.4118


v) 923+1554

Ans: cos(923+1554)


According to the natural cosine table,


cos(923'+1554')=cos(2477')


cos(923'+1554')=cos(2517')


cos(923'+1554')=cos(2512'+5')


cos(923'+1554')=0.90480.0006


cos(923'+1554')=0.9042


3. Use trigonometrical tables to find tangent of:

i) 37

Ans: tan37


According to the natural tangent table,


tan37=0.7536


ii) 4218

Ans: tan4218


According to the natural tangent table,


tan4218'=0.9099


iii) 1727

Ans: tan1727


According to the natural tangent table,


tan1727'=tan(1724'+3')


tan1727'=0.3134+0.0010


tan1727'=0.3144


4. Use tables to find the acute angle θ, if the value of sinθ is:

i) 0.4848

Ans: sinθ=0.4848


From the sine table, it is clear that sin29=0.4848


sinθ=sin29


Hence, θ=29


ii) 0.3827

Ans: sinθ=0.3827


From the sine table, it is clear that sin2230'=0.3827


sinθ=sin2230'


Hence, θ=2230'


iii) 0.6525

Ans: sinθ=0.6525


From the sine table, it is clear that sin4042'=0.6521


sinθsin4042=0.65250.6521


So, the mean difference is 0.0004.


From the table, difference of 2'=0.0004


Hence, θ=4042+2=4044


5. Use tables to find the acute angle θ, if the value of cosθ is:

i) 0.9848

Ans: cosθ=0.9848


From the cosine table, it is clear that cos10=0.9848


cosθ=cos10


Hence, θ=10


ii) 0.9574

Ans: cosθ=0.9574


From the cosine table, it is clear that cos1648'=0.9573


cosθcos1648'=0.95740.9573


So, the mean difference is 0.0001.


From the table, difference of 1'=0.0001


Hence, θ=1648'1=1647


iii) 0.6885

Ans: cosθ=0.6885


From the cosine table, it is clear that cos4630'=0.6884


cosθcos4630'=0.68850.6884


So, the mean difference is 0.0001.


From the table, difference of 1'=0.0001


Hence, θ=4630'1=4629


6. Use tables to find the acute angle θ, if the value of tanθ is:

i) 0.2419

Ans: tanθ=0.2419


From the tangent table, it is clear that tan1336'=0.2419


Hence, θ=1336'


ii) 0.4741

Ans: tanθ=0.4741


From the tangent table, it is clear that tan2518'=0.4727


tanθtan2518=0.47410.4727


So, the mean difference is 0.0014.


From the table, difference of 4'=0.0014


Hence, θ=2518'+4=2522


iii) 0.7391

Ans: tanθ=0.7391


From the tangent table, it is clear that tan3624'=0.7373


tanθtan3624'=0.73910.7391


So, the mean difference is 0.0018.


From the table, difference of 4'=0.0018


Hence, θ=3624'+4=3628'


Exercise - 21(E)


1. Prove the following identities:

i) 1cosA+sinA+1cosAsinA=2cosAcos2A1

Ans: Taking LHS -


LHS=1cos A+sin A+1cos Asin A


=cos Asin A+cos A+sin A(cos A+sin A)(cos Asin A)


=2cosAcos2A1=RHS                                                  [a2b2=(a+b)(ab)]


LHS=RHS


Hence proved.


ii) cosecAcotA=sinA1+cosA

Ans: Taking LHS -


LHS=cosec Acot A


=1sin Acos AsinA                                               [cosec A=1sin A,cot A=cos Asin A]


=1cos Asin A


=1cos Asin A×(1+cos A1+cos A)


=1cos2Asin A(1+cos A)                                                       [a2b2=(a+b)(ab)]


=sin2Asin A(1+cos A)                                            [Weknowthat:sin2A+cos2A=1]         


=sinA1+cosA=RHS                                              


LHS=RHS


Hence proved.


iii) 1sin2A1+cosA=cosA

Ans: Taking LHS -


LHS=1sin2A1+cosA


=11cos2A1+cosA                                            [Weknowthat:sin2A+cos2A=1]


=1(1cos A)(1+cos A)1+cos A                                       [a2b2=(a+b)(ab)]


=1(1cos A)


=cosA=RHS                                              


LHS=RHS


Hence proved.


iv) 1cosAsinA+sinA1cosA=2cosecA

Ans: Taking LHS -


LHS=1cos Asin A+sin A1cos A


=(1 cos A)2+sin2Asin A(1cos A)                                            


=1+cos2A2cos A+sin2Asin A(1cos A)                                         [a2+b2+2ab=(a+b)2]


=1+12cos Asin A(1cos A)                                             [Weknowthat:sin2A+cos2A=1]


=2(1cos A)sin A(1cos A)


=2cosecA=RHS                                                                   [sin A=1cosec A]                                


LHS=RHS


Hence proved.


v) cotA1tanA+tanA1cotA=1+tanA+cotA

Ans: Taking LHS -


LHS=cot A1tan A+tan A1cot A


=1tan A1 tan A+tan A11tan A                                                              [tan A=1cot A]     


=1tan A(1tan A)+tan Atan A1tan A                                         


=1tan A(1tan A)tan2A1tan A                                             


=1tan3Atan A(1tan A)


=(1tan A)(1+tan2A+tan A)tan\;A\;(1 tan A)                       [a3b3=(ab)(a2+b2+ab)]


=(1+tan2A+tanA)tanA


=cotA+tanA+1=RHS                                                 [cot A=1tan A]                                


LHS=RHS


Hence proved.


vi) cosA1+sinA+tanA=secA

Ans: Taking LHS -


LHS=cos A1+sin A+tan A


=cos A1+sinA+sin AcosA                                                                [tan A=sin Acos A]  


=cos2A+ sin A+sin2A(1+sinA)cos A                                         


=1+sin A(1+sin A)cos A                                                            [sin2A+cos2A=1]


=1cos A


=secA=RHS                                                                   [sec A=1cos A]                                


LHS=RHS


Hence proved.


vii) sinA1cosAcotA=cosecA

Ans: Taking LHS -


LHS=sin A1cos Acot A


=sin A1cos Acos Asin A                                                                [cot A=cos Asin A]  


=sin2AcosA+cos2A(1cos A)sinA                                         


=1cos A(1cos A)sin A                                                            [sin2A+cos2A=1]


=1sin A


=cosecA=RHS                                                                   [cosec A=1sin A]                                


LHS=RHS


Hence proved.


viii) sinAcosA+1sinA+cosA1=cosA1sinA

Ans: Taking LHS -


LHS=sin Acos A+1sin A+cos A1


=sin A cos A+1sin A+cos A1×sin A(cos A1)sin A(cos A1)                                                                


=(sin A cos A+1)2sin2A(cos A1)2                                                  [a2b2=(a+b)(ab)]


=sin2A+(cos A1)22sin A(cos A1)sin2Acos2A1+2cos A                         [a2+b22ab=(ab)2]                     


=sin2A+cos2A+12cos A2sin A cos A+2sin Asin2Acos2A1+2cos A            [a2+b22ab=(ab)2]


=1+12cos A2sin A cos A+2sin A1cos2Acos2A1+2cos A                                        [sin2A+cos2A=1]


=2(1cos A)+2sin A(cos A+1)2cos2A+2cos A


=2(1cos A)(1+sin A)2cos A(1cos A)


=(1+sin A)cos A


=(1+sin A)cos A×(1sin A)(1sin A)


=(1sin2A)cos A(1sin A)                                                       [a2b2=(a+b)(ab)]


=cos2Acos A(1 sin A)                                                                    [sin2A+cos2A=1]


=cosA1sinA=RHS                                                                                             


LHS=RHS


Hence proved.


ix) 1+sinA1sinA=cosA1sinA

Ans: Taking LHS -


LHS=1+sin A1sin A


=1+sin A1sin A×1sin A1sin A                                                                


=12sin2A(1 sin A)2                                                  [a2b2=(a+b)(ab)]


=cos2A(1sin A)2                                                               [sin2A+cos2A=1]                


=cosA1sinA=RHS                                                                                             


LHS=RHS


Hence proved.


x) 1cosA1+cosA=sinA1+cosA

Ans: Taking LHS -


LHS=1cosA1+cosA


=1cosA1+cosA×1+cos A1+cos A                                                                


=12\;cos2A(1+cos A)2                                                  [a2b2=(a+b)(ab)]


=sin2A(1+cos A)2                                                               [sin2A+cos2A=1]                


=sinA1+cosA=RHS                                                                                             


LHS=RHS


Hence proved.


xi) 1+(secAtanA)2cosecA(secAtanA)=2tanA

Ans: Taking LHS -


LHS=1+(sec Atan A)2cosec A(sec Atan A)


=sec2Atan2A+(sec Atan A)2cosec A(sec Atan A)                                             [sec2Atan2A=1]                                        


=(sec Atan A)(sec A+tan A)+(sec Atan A)2cosec A(sec Atan A)               [a2b2=(a+b)(ab)]


=(sec Atan A)[(sec A+tan A)+(sec Atan A)]cosec A(sec Atan A)


=[(sec A+ tan A)+(sec Atan A)]cosec A


=2sec Acosec A


=2sin Acos A                                                             [ cosec A=1sin A, sec A=1cos A]


=2tanA=RHS                                                                         [ tan A=sin Acos A]                                                     


LHS=RHS


Hence proved.


xii) (cosecAcotA)2+1secA(cosecAcotA)=2cotA

Ans: Taking LHS -

LHS=(cosec Acot A)2+1sec A(cosec Acot A)


=(cosec Acot A)2+cosec2Acot2Asec A(cosec Acot A)                                     [cosec2Acot2A=1]                                        


=(cosec Acot A)2+(cosec A+cot A)(cosec Acot A)sec A(cosec Acot A)       [a2b2=(a+b)(ab)]


=(cosec Acot A)[(cosec Acot A)+(cosec Acot A)]sec A(cosec Acot A)


=[(cosec Acot A)+(cosec Acot A)]sec A


=2cosec Asec A


=2cos Asin A                                                             [cosec A=1sin A,sec A=1cos A]


=2cotA=RHS                                                                         [cot A=cos Asin A]                                                     


LHS=RHS


Hence proved.


xiii) cot2A(secA11+sinA)+sec2A(sinA11+secA)=0

Ans: Taking LHS -


LHS=cot2A(sec A11+sin A)+sec2A(sin A11+sec A)


=cot2A(sec A11+sin A×sec A+1sec A+1)+sec2A(sin A11+sec A)                                                                  


=cot2A(sec2A1(1+sin A)(sec A+1))+sec2A(sin A11+sec A)    [a2b2=(a+b)(ab)]


=cot2A(tan2A(1+sin A)(sec A+1))+sec2A(sin A11+sec A)              [sec2Atan2A=1]


=cot2A(tan2A(1+sin A)(sec A+1))+sec2A(sin A11+sec A×sin A+1sin A+1)


=(1(1+sin A)(sec A+1))+sec2A(sin A11+sec A×sin A+1sin A+1)                   [cot A=1tan A]


=(1(1+sin A)(sec A+1))+sec2A(sin2A1(1+sin A)(1+sec A))   


=(1+sec2A(cos2A)(1+sinA)(sec A+1))                                                          [sin2A+cos2A=1]


=(111+sin A(sec A+1))                                                                     [cos A=1sec A]


=0=RHS                                                                                                                            


LHS=RHS


Hence proved.


xiv) (12sin2A)2cos4Asin4A=2cos2A1

Ans: Taking LHS -


LHS=(12sin2A)2cos4Asin4A


=(sin2A+cos2A2sin2A)2cos4Asin4A                                                       [sin2A+cos2A=1]                                        


=(cos2Asin2A)2cos4Asin4A     


=(cos2Asin2A)2(cos2Asin2A)(cos2A+sin2A)                                     [a2b2=(a+b)(ab)]


=cos2Asin2A                                                              [sin2A+cos2A=1]


=cos2A(1cos2A)                                                  [sin2A+cos2A=1]


=2cos2A1=RHS                                                                                                                         


LHS=RHS


Hence proved.


xv) sec4A(1sin4A)2tan2A=1

Ans: Taking LHS -


LHS=sec4A(1sin4A)2tan2A


=sec4A(1sin2A)(1+sin2A)2tan2A      [a2b2=(a+b)(ab)]                                        


=sec4A(cos2A)(1+sin2A)2tan2A                           [sin2A+cos2A=1]


=sec2A(1+sin2A)2tan2A                                        [sec2A×cos2A=1]


=sec2A+sin2A.sec2A2tan2A                                    


=sec2A+sin2Acos2A2tan2A 


=sec2A+tan2A2tan2A     


=sec2Atan2A                                                 


=1=RHS                                                                       [sec2Atan2A=1]                                                            


LHS=RHS


Hence proved.


xvi) cosec4A(1cos4A)2cot2A=1

Ans: Taking LHS -


LHS=cosec4A(1cos4A)2cot2A


=cosec4A(1cos2A)(1+cos2A)2cot2A  [a2b2=(a+b)(ab)]                                        


=cosec4A(sin2A)(1+cos2A)2cot2A                       [sin2A+cos2A=1]


=cosec2A(1+cos2A)2cot2A                                 [cosec2A×sin2A=1]


=cosec2A+cos2A.cosec2A2cot2A                                    


=cosec2A+cos2Asin2A2cot2A    


=cosec2A+cot2A2cot2A                               


=cosec2Acot2A                              


=1=RHS                                                                   [cosec2Acot2A=1]                                                                         


LHS=RHS


Hence proved.


xvii) (1+tanA+secA)(1+cotAcosecA)=2

Ans: Taking LHS -


LHS=(1+tan A+sec A)(1+cot Acosec A)


=(1+sin Acos A+1cos A)(1+cos Asin A1sin A)         


[ cos A=1sec A, sin A=1cosec A, tan A=sinAcos A,cot A=cosAsin A]


=(cos A+ sin A+1cos A)(sin A+ cos A1sin A)                   


=((cos A + sin A)212cos A.sin A)                                              [a2b2=(a+b)(ab)]


=(cos2A+sin2A+2sin A.cos A1cos A.sin A)                               [a2+b2+2ab=(a+b)2]


=(1+2sin A.cos A1cos A.sin A)                                                            [sin2A+cos2A=1]


=(2sin A.cos Acos A.sin A)                               


=1=RHS                                                                                                                                   


LHS=RHS


Hence proved.


2. If sinA+cosA=p and secA+cosecA=q, then prove that: q(p21)=2p.

Ans: Taking LHS -


LHS=q(p21)


=(sec A+cosec A)[(sin A+cos A)21]         


=(sec A+cosec A)[sin2A+cos2A+2sin A.cosA1]     

          

                                                               [a2+b2+2ab=(a+b)2]              


=(sec A+cosec A)[1+2sin A.cosA1]                 [sin2A+cos2A=1]


=(sec A+cosec A)[2sin A.cosA]


=[2sin A.cosA.sec A+2sin A.cosA.cosec A]


[cosA=1secA,sinA=1cosec A]


=2sin A+2cos A


=2p=RHS                                                                                                                                   


LHS=RHS


Hence proved.


3. If x=acosθ and y=bcotθ, show that:

a2x2b2y2=1

Ans: Taking LHS -


LHS=a2x2b2y2


x=acosθ&y=bcotθ 


xa=cosθ&yb=cotθ


ax=secθ&by=tanθ                            [cosA=1sec A, tan A=1cot A]


So, 


a2x2b2y2=sec2θtan2θ


a2x2b2y2=1                                                                    [sec2Atan2A=1] 


=1=RHS                                                                                                                                   


LHS=RHS


Hence proved.


4. If secA+tanA=p,show that:

sinA=p21p2+1

Ans: Taking RHS -


RHS=p21p2+1


secA+tanA=p 


=(secA+tanA)21(secA+tanA)2+1


=sec2A+tan2A+2secA.tanA1sec2A+tan2A+2secA.tanA+1                     


=tan2A+tan2A+2secA.tanAsec2A+sec2A+2secA.tanA                                                [sec2A=tan2A+1]  


=2tan2A+2secA.tanA2sec2A+2secA.tanA 


=2tanA(tanA+secA)2secA(secA+tanA)


=tanAsecA


=sin Acos A1cos A                                                                [sec A=1cos A,tan A=sin Acos A]


=sin A=LHS


LHS=RHS


Hence proved.


5. If tanA=n.tanB and sinA=m.sinB, prove that: cos2A=m21n21.

Ans: Taking RHS -


RHS=m21n21


tanA=n.tanB&sinA=m.sinB 


n=tanAtanB&m=sinAsinB


=(sinAsinB)21(tanAtanB)21


=tan2B.(sin2Asin2B)sin2B.(tan2Atan2B)                     


=sin2Bcos2B.(sin2Asin2B)sin2B.(sin2Acos2Asin2Bcos2B)                                                                        [tan A=sin Acos A]  


=(sin2Asin2B)cos2B.(sin2Acos2Asin2Bcos2B) 


Multiply numerator and denominator by cos2A.


=cos2A.(sin2Asin2B)cos2A.cos2B.(sin2Acos2Asin2Bcos2B)


=cos2A.(sin2Asin2B)cos2B.sin2Acos2A.sin2B


=cos2A.(1cos2A1+cos2B)cos2B.sin2Acos2A.(1cos2B)                                              [sin2A+cos2A=1]


=cos2A.(cos2Bcos2A)cos2B(sin2A+cos2A)cos2A


=cos2A.(cos2Bcos2A)cos2B(1)cos2A                                                            [sin2A+cos2A=1]


=cos2A=LHS


LHS=RHS


Hence proved.


6. If 2sinA1=0, show that: sin3A=3sinA4sin3A.

Ans: Given 2sin A1=0


sin A=12


We know that sin30=12


sin A=sin 30


A=30


Taking LHS -


LHS=sin3A


=sin 90


=1


Taking RHS - 

RHS=3sin A4sin3A


=3(12)4(12)3


=3248


=1=LHS


LHS=RHS


Hence proved.


7. Evaluate: 

i) 2(tan35cot55)2+(cot55tan35)23(sec40cosec50)

Ans: 2(tan35cot55)2+(cot55tan35)23(sec40cosec50)


=2(tan(9055)cot55)2+(cot55tan(9055))23(sec(9050)cosec50)


=2(cot55cot55)2+(cot55cot55)23(cosec50cosec50)        [tan(90A)=cot A&sec(90A)=cosecA]


=2(1)+13(1)


=33=0


ii) sec26sin64+cosec33sec57

Ans: sec26sin64+cosec33sec57


=sec(9064)sin64+cosec33sec(9033)


=cosec64sin64+cosec33cosec33                             [sec(90A)=cosecA]


=1+1                                                                         [sin A.cosec A=1]=2


iii) 5sin66cos242cot85tan5

Ans: 5sin66cos242cot85tan5


=5sin66cos(9066)2cot85tan(9085)


=5sin66sin662cot85cot85      [sin(90A)=cos A&tan(90A)=cot A]


=52


=3


iv) cos40cosec50+sin50sec40

Ans: cos40cosec50+sin50sec40


=cos40cosec(9040)+sin50sec(9050)


=cos40sec40+sin50cosec50     [sec(90A)=cosecA&cosec(90A)=secA]


=1+1                      [secA.cos A=1&cosec A.sin A=1]


=2


v) sin27sin63cos63cos27

Ans: sin27sin63cos63cos27


=sin27sin(9027)cos(9027)cos27


=sin27.cos27sin27.cos27       [sin(90A)=cos A&cos(90A)=sin A]


=0


vi) 3sin72cos18sec32cosec58

Ans: 3sin72cos18sec32cosec58


=3sin72cos(9072)sec32cosec(9032)


=3sin72sin72sec32sec32     [cosec(90A)=secA&cos(90A)=sinA]


=3(1)1


=2


vii) 3cos80cosec10+2cos59cosec31

Ans: 3cos80cosec10+2cos59cosec31


=3cos80cosec(9080)+2cos59cosec(9059)


=3cos80sec80+2cos59sec59             [cosec(90A)=secA]


=3(1)+2(1)                                                                      [sec A.cos A=1]


=5


viii) cos75sin15+sin12cos78cos18sin72

Ans: cos75sin15+sin12cos78cos18sin72


=cos(9015)sin15+sin12cos(9012)cos(9072)sin72


=sin15sin15+sin12sin12sin72sin72                                       [cos(90A)=sinA]


=1+11


=1


8. Prove that:

i) tan(55+x)=cot(35x)

Ans: Taking LHS -


LHS=tan(55+x)


=tan[(9035)+x)]


=tan[90(35x)]


=cot(35x)=RHS                                             [tan(90A)=cotA]


LHS=RHS


Hence proved.


ii) sec(70θ)=cosec(20+θ)

Ans: Taking LHS -


LHS=sec(70θ)


=sec((9020)θ)


=sec[90(20+θ)]


=cosec(20+θ)=RHS                                     [sec(90A)=cosecA]


LHS=RHS


Hence proved.


iii) sin(28+A)=cos(62A)

Ans: Taking LHS -


LHS=sin(28+A)


=sin[(9062)+A]


=sin[90(62A)]


=cos(62A)=RHS                                            [sin(90A)=cosA]


LHS=RHS


Hence proved.


iv) 11+cos(90A)+11cos(90A)=2cosec2(90A)

Ans:  Taking LHS -


=11+cos(90A)+11cos(90A)


=1sinA+(1+sinA)(1+sin A)(1sin A)                                                       [cos(90A)=sinA]


=212sin2A                                                               [a2b2=(a+b)(ab)]


=2cos2A                                                                                 [sin2A+cos2A=1]


=2.sec2A                                                                                     [sec A=1cos A]


=2cosec2(90A)=RHS                                 [sec(90A)=cosec A]


LHS=RHS


Hence proved.


v) 11+sin(90A)+11sin(90A)=2sec2(90A)

Ans:  Taking LHS -


=11+sin(90A)+11sin(90A)


=1cosA+(1+cosA)(1+cos A)(1cosA)                                                      [sin(90A)=cosA]


=212Cos2A                                                              [a2b2=(a+b)(ab)]


=2sin2A                                                                                 [sin2A+cos2A=1]


=2.cosec2A                                                                             [cosec A=1sin A]


=2sec2(90A)=RHS                                     [cosec(90A)=secA]


LHS=RHS


Hence proved.


9. If A and B are complementary angles, prove that:

i) cotB+cosB=secA.cosB(1+sinB)

Ans: Since, A and B are complementary angles, A+B=90


Taking LHS -


LHS=cotB+cosB


=cot(90A)+cos(90A)


=tanA+sinA                [cos(90θ)=sinθ&cot(90θ)=tanθ]


=sinAcosA+sinA                             [tan A=sin Acos A]


=sinA+sinA.cosAcosA


=sinA(1+cosA)cosA


=secA.sinA(1+cosA)                                                         [sec A=1cos A]


=secA.sin(90B)[1+cos(90B)]


=secA.cosB(1+sinB)=RHS        [sin(90θ)=cosθ&cos(90θ)=sinθ]


LHS=RHS


Hence proved.


ii) cotA.cotBsinA.cosBcosA.sinB=0

Ans: Since, A and B are complementary angles, A+B=90


Taking LHS -


LHS=cotA.cotBsinA.cosBcosA.sinB


=cotA.cot(90A)sinA.cos(90A)cosA.sin(90A)


=cotA.tanAsinA.sinAcosA.cosA


[cos(90θ)=sinθ&cot(90θ)=tanθ&sin(90θ)=cosθ]


=1sin2Acos2A


=1(sin2A+cos2A)


=11                                                                               [sin2A+cos2A=1]


=0=RHS


LHS=RHS


Hence proved.


iii) cosec2A+cosec2B=cosec2A.cosec2B

Ans: Since, A and B are complementary angles, A+B=90


Taking LHS -


LHS=cosec2A+cosec2B


=cosec2A+cosec2(90A)


=cosec2A+sec2A [cosec(90θ)=secθ]


=1sin2A+1cos2A                                         [sec A=1cos A&cosec A=1sin A]


=(sin2A+cos2A)sin2A.cos2A


=1sin2A.cos2A    [sin2A+cos2A=1]


=cosec2A.sec2A                                      [sec A=1coS A&cosec A=1sin A]


=cosec2A.sec2(90B)


=cosec2A.cosec2B=RHS                                 [sec(90θ)=cosecθ]


LHS=RHS


Hence proved.


iv) sinA+sinBsinAsinB+cosBcosAcosB+cosA=22sin2A1

Ans: Since, A and B are complementary angles, A+B=90


Taking LHS -


LHS=sinA+sinBsinAsinB+cosBcosAcosB+cosA


=sinA+sinBsinAsinB+cos(90A)cos(90B)cos(90A)+cos(90B)


=sinA+sinBsinAsinB+sinAsinBsinA+sinB                                           [cos(90θ)=sinθ]


=(sinA+sinB)2+(sinAsinB)2(sinAsinB)(sinA+sinB)


=sin2A+sin2B+2sinA.sinB+sin2A+sin2B2sinA.sinBsin2Asin2B


[\;\;(a±b)2=a2+b2±2ab&(a+b)(ab)=a2b2]


=2(sin2A+sin2B)sin2Asin2B


=2[sin2A+sin2(90A)]sin2Asin2(90A)


=2[sin2A+cos2A]sin2Acos2A                                                             [sin(90θ)=cosθ]


=2sin2A(1sin2A)                                                                [sin2A+cos2A=1]


=22sin2A1=RHS                            


LHS=RHS


Hence proved.


10. Prove that:

i) 1sinAcosA1sinA+cosA=2cosA2sin2A1

Ans: Taking LHS -


LHS=1sinAcosA1sinA+cosA


=sinA+cosA(sinAcosA)(sinAcosA)(sinA+cosA)


=2cosAsin2Acos2A                                                          [(a+b)(ab)=a2b2]


=2cosAsin2A(1sin2A)                                                                [sin2A+cos2A=1]


=2cosA2sin2A1=RHS


LHS=RHS


Hence proved.


ii) cot2AcosecA11=cosecA

Ans: Taking LHS -


LHS=cot2AcosecA11


=cot2A(cosecA1)cosecA1

=cot2AcosecA+1cosecA1                                           


=cosec2AcosecAcosecA1                                                              [cosec2A=cot2A+1]


=cosecA.(cosecA1)cosecA1


=cosecA=RHS


LHS=RHS


Hence proved.


iii) cosA1+sinA=secAtanA

Ans: Taking LHS -


LHS=cosA1+sinA


=cosA1+sinA×1sinA1sinA


=cosA(1sinA)1sin2A                                                       [(a+b)(ab)=a2b2]                   


=cosA(1sinA)cos2A                                                                    [sin2A+cos2A=1]


=1cosAsinAcosA


=secAtanA=RHS


LHS=RHS


Hence proved.


iv) cosA(1+cotA)+sinA(1+tanA)=secA+cosecA

Ans: Taking LHS -

LHS=cosA(1+cotA)+sinA(1+tanA)


=cosA+cosA.cotA+sinA+sinA.tanA


=cosA+cosA.cosAsinA+sinA+sinA.sinAcosA    [tan A=sinAcosA&cotA=cosAsinA]


=cosA+cos2AsinA+sinA+sin2AcosA


=cos2A+sin2AsinA+cos2A+sin2AcosA


=1sinA+1cosA                                [sin2A+cos2A=1]


=cosecA+secA=RHS                          [sec A=1cosA&cosecA=1sinA]


Hence proved.


v) (sinAcosA)(1+tanA+cotA)=secAcosec2AcosecAsec2A

Ans: Taking LHS -


LHS=(sinAcosA)(1+tanA+cotA)


=(sinAcosA)(1+sinAcosA+cosAsinA)          [tan A=sinAcosA&cotA=cosAsinA]


=sinA+sinA.sinAcosA+sinA.cosAsinAcosAcosA.sinAcosAcosA.cosAsinA 


=sinA+sinA.sinAcosA+cosAcosAsinAcosA.cosAsinA


=sin2AcosAcos2AsinA


=secAcosec2AcosecAsec2A=RHS                          [sec A=1cosA&cosecA=1sinA]


LHS=RHS


Hence proved.


vi) sec2A+cosec2A=tanA+cotA

Ans: Taking LHS -


LHS=sec2A+cosec2A


=1cos2A+1sin2A                                         [sec A=1cosA&cosecA=1sinA]


=sin2A+cos2Asin2A.cos2A 


=1sin2A.cos2A                                                                    [sin2A+cos2A=1]


=1sinA.cosA


Taking RHS -


RHS=tanA+cotA


=sinAcosA+cosAsinA                                                 [tan A=sinAcosA&cotA=cosAsinA]


=sin2A+cos2AsinA.cosA 


=1sinA.cosA                                                                         [sin2A+cos2A=1]


LHS=RHS


Hence proved.


vii) (sinA+cosA)(secA+cosecA)=2+secA.cosecA

Ans: Taking LHS -


LHS=(sinA+cosA)(secA+cosecA)


=(sinA+cosA)(1cosA+1sinA)               [sec A=1cosA&cosecA=1sinA]


=sinAcosA+1+1+cosAsinA 


=2+sinAcosA+cosAsinA


=2+sin2A+cos2AsinA.cosA


=2+1sinA.cosA                                                                 [sin2A+cos2A=1]


=2+secA.cosecA=RHS                     [sec A=1cosA&cosecA=1sinA]


LHS=RHS


Hence proved.


viii) (tanA+cotA)(cosecAsinA)(secAcosA)=1

Ans: Taking LHS -


LHS=(tanA+cotA)(cosecAsinA)(secAcosA)


=(sinAcosA+cosAsinA)(1sinAsinA)(1cosAcosA)


[\;sec\;A=1cosA&cosecA=1sinA&tan\;A=sinAcosA&cotA=cosAsinA]


=(sin2A+cos2AsinA.cosA)(1sin2AsinA)(1cos2AcosA) 


=(1sinA.cosA)(cos2AsinA)(sin2AcosA)                                              [sin2A+cos2A=1]


=1=RHS


LHS=RHS


Hence proved.


ix) cot2Acot2B=cos2Acos2Bsin2A.sin2B=cosec2Acosec2B

Ans: : Taking LHS -


LHS=cot2Acot2B


=cos2Asin2Acos2Bsin2B                                 [cotA=cosAsinA]


=sin2B.cos2Asin2A.cos2Bsin2A.sin2B 


=(1cos2B).cos2A(1cos2A).cos=cos2Acos2A.cos2Bcos2B+cos2A.cos2Bsin2A.sin2B$2Bsin2A.sin2B                                      [sin2A+cos2A=1]


=cos2Acos2Bsin2A.sin2B=MS


Taking MS -


MS=cos2Acos2Bsin2A.sin2B


=1sin2A(1sin2B)sin2A.sin2B                                                            [sin2A+cos2A=1]


=sin2Bsin2Asin2A.sin2B


=sin2Bsin2A.sin2Bsin2Asin2A.sin2B


=1sin2A1sin2B


=cosec2Acosec2B=RHS


LHS=MS=RHS


Hence proved.


x) cotA12sec2A=cotA1+tanA

Ans: : Taking LHS -


LHS=cotA12sec2A


=1tanA12(1+tan2A)                                        [1+tan2A=sec2A&cotA=1tanA]


=1tanAtanA(1tan2A) 


=(1tanA)cotA(1tan2A)                                                                              [cotA=1tanA]


=(1tanA)cotA(1tanA)(1+tanA)                                               [(a+b)(ab)=a2b2]


=cotA1+tanA=RHS


LHS=RHS


Hence proved.


11. If 4cos2A3=0 and 0A90, then prove that:

i) sin3A=3sinA4sin3A

Ans: Given 4cos2A3=0


4cos2A=3


cos2A=34


cosA=32


We know that: cos30=32


cosA=cos30


A=30


Taking LHS - 


LHS=sin3A


=sin90


=1


Taking RHS - 


RHS=3sinA4sin3A


=3sin304sin330


=3×124(12)3


=3248


=1


LHS=RHS


Hence proved.


ii) cos3A=4cos3A3cosA

Ans: Given 4cos2A3=0


4cos2A=3


cos2A=34


cosA=32


We know that: cos 30=32


cos A=cos30


A=30


Taking LHS - 


LHS=cos3A


=cos90


=0


Taking RHS - 

RHS=4cos3A3cosA


=4cos3303cos30


=4(32)33×32


=3323×32


=0


LHS=RHS


Hence proved.


12. Find A, if 0A90 and:

i) 2cos2A1=0

Ans: 2cos2A1=0


2cos2A=1


cos2A=12


cosA=±12


Here given that 0A90, So in this interval cos A is positive. So we will neglect negative values.


cosA=12


We know that cos45=12


cos A=cos 45


A=45


ii) sin3A1=0


sin3A=1


We know that sin90=1


sin3A=sin90


3A=90


A=30


iii) 4sin2A3=0

Ans: 4sin2A3=0


4sin2A=3


sin2A=34


sinA=±32


Here given that 0A90, So in this interval sin A is positive. So we will neglect negative values.


sinA=32


We know that sin60=32


sinA=sin60


A=60


iv) cos2AcosA=0

Ans: cos2AcosA=0


cosA(cosA1)=0


cosA=0 Or cosA1=0


cosA=0 Or cosA=1


We know that cos90=0&cos0=1


cosA=cos90 Or cosA=cos0


A=90 or 0


v) 2cos2A+cosA1=0

Ans: 2cos2A+cosA1=0


2cos2A+2cosAcosA1=0


2cosA(cosA+1)1(cosA+1)=0


(2cosA1)(cosA+1)=0


2cosA1=0 or cosA+1=0


cosA=12 or cosA=1


We know that cos60=12


We also know that for no value of A in 0A90, cosA=1


cosA=cos60


A=60


13. If 0A90; find A, if:

i) cosA1sinA+cosA1+sinA=4

Ans: cosA1sinA+cosA1+sinA=4


cosA(1+sinA)+cosA(1sinA)(1+sinA)(1sinA)=4


cosA+cosA.sinA+cosAcosA.sinA(12sin2A)=4


2cosAcos2A=4


1cosA=2


cosA=12


We know that cos60=12


cosA=cos60


A=60


ii) sinAsecA1+sinAsecA+1=2

Ans: sinAsecA1+sinAsecA+1=2


sinA(1+secA)+sinA(secA1)(1+secA)(secA1)=2


sinA+secA.sinAsinA+secA.sinA(sec2A12)=2


2secA.sinAtan2A=2


2sinAcosAtan2A=2


tanAtan2A=1


tanA=1


We know that tan45=1


tanA=tan45


A=45


14. Prove that: 

(cosecAsinA)(secAcosA)sec2A=tanA

Ans: Taking LHS -


LHS=(cosec Asin A)(sec Acos A)sec2A


=(1sin Asin A)(1cos Acos A)sec2A

 

 [sec A=1cosA&cosecA=1sinA]


=(1sin2Asin A)(1cos2Acos A)sec2A


=(cos2Asin A)(sin2Acos A)sec2A                                    [sin2A+cos2A=1]


=(cos A)sin A.1cos2A                    [sec A=1cosA]


=sin Acos A


=tan A=RHS                                           [tan A=sinAcosA]


LHS=RHS


Hence proved.


15. Prove the identity (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ.

Ans: Taking LHS -


LHS=(sinθ+cosθ)(tanθ+cotθ)


=(sinθ+cosθ)(sinθcosθ+cosθsinθ)                  [tan A=sinAcosA&cotA=cosAsinA]


=sinθ.sinθcosθ+sinθ.cosθsinθ+cosθ.sinθcosθ+cosθ.cosθsinθ


=(sin2θcosθ)+cosθ+sinθ+(cos2θsinθ)


=(sin2θ+cos2θcosθ)+(sin2θ+cos2θsinθ)


=(1cosθ)+(1sinθ) [sin2A+cos2A=1]


=secθ+cosecθ=RHS                          [sec A=1cosA&cosecA=1sinA]


LHS=RHS


Hence proved.


16. Evaluate without using trigonometric tables,

sin228+sin262+tan238cot252+14sec230

Ans: sin228+sin262+tan238cot252+14sec230


=sin228+sin2(9028)+tan238cot2(9038)+14sec230


=sin228+cos228+tan238tan238+14(23)2


[sin(90A)=cosA&cot(90A)=tanA&sec30=23]


=1+0+14(43)                                                    [sin2A+cos2A=1]


=1+13


=43


How Should the Preparation be in Class 10?

Students that are facing difficulties in preparing for the exam and those who do not know how to solve a problem can reach the Vedantu website, for we are providing the students with proper guidance to prepare for the exam. Students that are having difficulties in solving a sum can make use of the Seline publisher’s textbook. This textbook is a best-selling textbook on the ICSE board. Almost all the students are using this textbook for practising purposes. Students might ask what is so good about this textbook? The answer to this question will be your score. This textbook contains all the sums and detailed answers to it. Every solution in this textbook is solved in a step-by-step manner considering step marks have a vital role in mathematics. 

 

Why is Trigonometry Important in Class 10?

Trigonometric preparation must be intense and more focused. All the formulae must be at the fingertips of the students. Having complicated formulae might be confusing. But the planned preparation can beat the chaos. Practice every day with pen and paper. Do not just see and read the formulae. Write down and make it a cheat sheet that will help you to revise at the neck of the moment before entering the exam hall.

 

Your preparation must include proper order. Get the updated syllabus from the Vedantu website and understand the pattern. Then improvise your learning by practising more important questions that will help you to get a better idea about the concept. Then move to take up the mock tests. Mock tests are a vital part of the preparation. It gives you a preview of the main examination. You can practice this way to score better marks in the examination. Doubts can be clarified by our Vedantu team. 

 

Conclusion

All study materials are available for free. Make use of these materials and stand out from other students. Exams are nearing. Start your preparation right now. Get onto the Vedantu website. We are here to help you. All the best for the examination!

WhatsApp Banner

FAQs on ICSE Class 10 Mathematics Chapter 21 - Trigonometric Identities Selina Solutions

1. Why is the trigonometric concept important in the Selina Concise Mathematics Class 10 ICSE Solutions for Chapter 21 - Trigonometric Identities?

Trigonometric topics are very important for class 10 students. As one of the most important fields of mathematics, particularly for careers that are built around calculating angles, working knowledge of trigonometry and its uses are. Trigonometry is useful for higher studies as well. In engineering, most of the mathematics chapters involve trigonometry. Get a strong base in the beginning and the rest will be easy for you to handle. 

2. What are the possibilities to score better marks in Selina Concise Mathematics Class 10 ICSE Solutions for Chapter 21 - Trigonometric Identities?

As long as students are interested in the subject, they will put more effort into preparing well for the examination. If you are going to prepare well, there will be more possibilities to score a better mark. It is easy to understand the concept if you have regular preparation. Daily practice is important when it comes to the maths subject. Practice with important questions that are provided on the Vedantu website along with practising the mock tests. Both these materials are available for free on the website. 

3. Do I have to practice all the sums given in our textbook, Selina concise textbook for class 10, ICSE board?

Yes, it is important to practice all the questions given in the textbook. The more you practice, the easier the subject will be. This gives you the confidence to face the examination and can help you build a strong foundation for your career. All the questions in the textbook are from the exam point of view. It can be solved using proper guidelines. The Vedantu provides Selina publishers with a textbook in which questions are explained in a detailed manner.

4. What is the total mark for the ICSE board and how much mark for chapter 21 in class 10?

The total mark for CBSE class 10 will be 500. For each subject will be 100 marks each. We all know that the ICSE board’s standards are high compared to the other boards, so the question papers will be set hard for the students. It requires immense preparation for the examination. To score 80% on the ICSE board will be difficult but with more preparation, students can easily score. It is in the way you get yourself prepared for the examination.

5. Why do we have to practice using Seline publisher’s textbook in class 10 for mathematics subject for chapter 21?

Seline publisher's textbook that is available on the Vedantu website is more reliable to the class 10 mathematics, especially for this concept trigonometry. This textbook will guide you throughout this academic year and this textbook follows all the guidelines set by the ICSE board. Practice all the sums given in this textbook and you will have the confidence to face the examination.