Answer
Verified
112.8k+ views
Hint: In order to solve this question you have to remember the definition of modulation index and the formula for finding the modulation index. Recall all the concepts related to the modulation, types of modulation, characteristics of the modulation.
Formula used:
$\mu = \dfrac{{{A_m}}}{{{A_c}}}$
Where, ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal
And, $\mu $ is the modulation index
Complete step by step solution:
Here, in the question, we have given the amplitude of the carrier signal,
${A_c} = 100V$
Also given the maximum and minimum amplitude of the modulated wave,
${A_{\max }} = 160V$ and ${A_{\min }} = 40V$
We also know that,
$ \Rightarrow {A_{\max }} = {A_c} + {A_m}$
$ \Rightarrow {A_{\min }} = {A_c} - {A_m}$
Where ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal.
On putting the value of ${A_{\max }}$ in the above equation for the maximum amplitude of the modulated wave, we get,
$ \Rightarrow 160V = {A_c} + {A_m}$
On putting the value of ${A_c}$ in the above equation,
$ \Rightarrow 160V = 100 + {A_m}$
On further solving, we get the value of the amplitude of the modulation signal,
${A_m} = 60V$
Now we have the formula for calculating the modulation index, given by,
modulation index, $\mu = \dfrac{{{A_m}}}{{{A_c}}}$
Where ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal
On putting the values of ${A_m}$ and the ${A_c}$ in the above formula, we get
$\mu = \dfrac{{60V}}{{100V}}$
On further solving we get the value of the modulation index,
$\mu = 0.6$
Thus the value of the modulation index is $0.6$.
Additional Information: There is one more formula for finding the modulation index using the maximum and minimum amplitude of the modulated wave. The formula is given by, $\mu = \dfrac{{{A_{\max }} - {A_{\min }}}}{{{A_{\max }} + {A_{\min }}}}$.
Note: The modulation index is also known as modulation depth. If the modulating index is multiplied by 100 then it is converted into the percentage of modulation. If the value of the modulating index is 1, then it is the example of a perfect modulating, and its percentage of modulation is 100%.
Formula used:
$\mu = \dfrac{{{A_m}}}{{{A_c}}}$
Where, ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal
And, $\mu $ is the modulation index
Complete step by step solution:
Here, in the question, we have given the amplitude of the carrier signal,
${A_c} = 100V$
Also given the maximum and minimum amplitude of the modulated wave,
${A_{\max }} = 160V$ and ${A_{\min }} = 40V$
We also know that,
$ \Rightarrow {A_{\max }} = {A_c} + {A_m}$
$ \Rightarrow {A_{\min }} = {A_c} - {A_m}$
Where ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal.
On putting the value of ${A_{\max }}$ in the above equation for the maximum amplitude of the modulated wave, we get,
$ \Rightarrow 160V = {A_c} + {A_m}$
On putting the value of ${A_c}$ in the above equation,
$ \Rightarrow 160V = 100 + {A_m}$
On further solving, we get the value of the amplitude of the modulation signal,
${A_m} = 60V$
Now we have the formula for calculating the modulation index, given by,
modulation index, $\mu = \dfrac{{{A_m}}}{{{A_c}}}$
Where ${A_m}$ is the amplitude of the modulation signal
${A_c}$ is the amplitude of the carrier signal
On putting the values of ${A_m}$ and the ${A_c}$ in the above formula, we get
$\mu = \dfrac{{60V}}{{100V}}$
On further solving we get the value of the modulation index,
$\mu = 0.6$
Thus the value of the modulation index is $0.6$.
Additional Information: There is one more formula for finding the modulation index using the maximum and minimum amplitude of the modulated wave. The formula is given by, $\mu = \dfrac{{{A_{\max }} - {A_{\min }}}}{{{A_{\max }} + {A_{\min }}}}$.
Note: The modulation index is also known as modulation depth. If the modulating index is multiplied by 100 then it is converted into the percentage of modulation. If the value of the modulating index is 1, then it is the example of a perfect modulating, and its percentage of modulation is 100%.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking