
A fuse wire with circular cross section and having a diameter of $0.4mm$ blows with a current $I$ of $3A$ . The value of current for which another fuse wire made of the same material but having circular cross section with diameter of $0.6mm$ will blow is:
A) $3amp$
B) $3\sqrt {\dfrac{3}{2}} amp$
C) $3{(\dfrac{3}{2})^{3/2}}amp$
D) $3(\dfrac{3}{2})amp$
Answer
134.7k+ views
Hint: A fuse is basically a piece of wire that is used for safety purposes in a circuit. This wire is made up of a material with a high resistance and a very low melting point. It protects the circuit from short circuit or damage.
Complete step by step solution:
Step I:
As it is said that fuse wire has a high resistance, therefore when a large current flows through the wire it heats up and breaks the circuit. This protects the circuit.
Step II:
Given there are two fuse wires used.
Let ${l_1}$ be the length and ${r_1}$ be the radius of the first fuse wire.
Let ${l_2}$ be the length and ${r_2}$ be the radius of the second fuse wire.
For a fuse wire, the current ‘I’ flowing varies directly with the radius ‘r’ of the wire.
It can be written as
$I \propto {(r)^{3/2}}$
Step III:
Let ${I_1}$ be the current flowing in the first wire and ${I_2}$ be the current flowing in the second wire.
Given
${I_1} = 3A$
${I_2} = ?$
${d_1} = 0.4mm$
${r_1} = \dfrac{{0.4}}{2} = 0.2mm$
${d_2} = 0.6mm$
${r_2} = \dfrac{{0.6}}{2} = 0.3mm$
Step IV:
The current through the second wire can be calculated by taking the ratio of both the currents.
\[\dfrac{{{I_1}}}{{{I_2}}} = {(\dfrac{{{r_1}}}{{{r_2}}})^{3/2}}\]
Substituting the values and solving,
$\Rightarrow$ $\dfrac{3}{{{I_2}}} = {(\dfrac{{0.2}}{{0.3}})^{3/2}}$
$\Rightarrow$ ${I_2} = {(\dfrac{3}{2})^{3/2}}.3$
$\Rightarrow$ ${I_2} = 3{(\dfrac{3}{2})^{3/2}}A$
Step V:
The current flowing through the wire if diameter $0.6mm$ will be $3.{(\dfrac{3}{2})^{3/2}}$
Option C is the right answer.
Note: It is to be noted that the current flowing through the wire can vary according to length, radius and resistance of the material used in the wire. All since the energy is always conserved, therefore it changes its form from electrical energy to heat energy. When electrons move, some current reflects in the form of heat. It is also a type of energy.
Complete step by step solution:
Step I:
As it is said that fuse wire has a high resistance, therefore when a large current flows through the wire it heats up and breaks the circuit. This protects the circuit.
Step II:
Given there are two fuse wires used.
Let ${l_1}$ be the length and ${r_1}$ be the radius of the first fuse wire.
Let ${l_2}$ be the length and ${r_2}$ be the radius of the second fuse wire.
For a fuse wire, the current ‘I’ flowing varies directly with the radius ‘r’ of the wire.
It can be written as
$I \propto {(r)^{3/2}}$
Step III:
Let ${I_1}$ be the current flowing in the first wire and ${I_2}$ be the current flowing in the second wire.
Given
${I_1} = 3A$
${I_2} = ?$
${d_1} = 0.4mm$
${r_1} = \dfrac{{0.4}}{2} = 0.2mm$
${d_2} = 0.6mm$
${r_2} = \dfrac{{0.6}}{2} = 0.3mm$
Step IV:
The current through the second wire can be calculated by taking the ratio of both the currents.
\[\dfrac{{{I_1}}}{{{I_2}}} = {(\dfrac{{{r_1}}}{{{r_2}}})^{3/2}}\]
Substituting the values and solving,
$\Rightarrow$ $\dfrac{3}{{{I_2}}} = {(\dfrac{{0.2}}{{0.3}})^{3/2}}$
$\Rightarrow$ ${I_2} = {(\dfrac{3}{2})^{3/2}}.3$
$\Rightarrow$ ${I_2} = 3{(\dfrac{3}{2})^{3/2}}A$
Step V:
The current flowing through the wire if diameter $0.6mm$ will be $3.{(\dfrac{3}{2})^{3/2}}$
Option C is the right answer.
Note: It is to be noted that the current flowing through the wire can vary according to length, radius and resistance of the material used in the wire. All since the energy is always conserved, therefore it changes its form from electrical energy to heat energy. When electrons move, some current reflects in the form of heat. It is also a type of energy.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
