
A gamma-ray photon creates an electron-positron pair. If the total kinetic energy of the electron-positron pair is 0.78 MeV and the rest mass energy of the electron is 0.5 MeV, find the energy of the gamma-ray photon.
A) 0.78 MeV
B) 1.78 MeV
C) 1.28 MeV
D) 0.28 MeV
Answer
134.4k+ views
Hint: The gamma-ray photon converts into an electron-positron pair moving with a total kinetic energy of 0.78 MeV. The energy of this reaction is conserved. Also, the rest mass energy of the electron is equal to the rest mass energy of the positron.
Complete step by step answer:
Step 1: List the parameters known from the question.
The creation of the electron-positron pair can be expressed as a reaction equation.
${\text{gamma - ray photon}} \to e + {e^ + } + K.E$
The rest mass energy of the electron is ${E_{e0}} = 0.5{\text{MeV}}$.
The total kinetic energy of the electron-positron pair is $K.E = 0.78{\text{MeV}}$.
Step 2: Find the energy of the gamma-ray photon using the energy conservation theorem.
According to the energy conservation theorem, the energy before creation must be equal to the energy after creation.
i.e., ${E_b} = {E_a}$
The energy before creation is the energy of the gamma-ray photon.
i.e., ${E_b} = {E_\gamma }$
The energy after creation is the sum of the rest mass energy of the electron ${E_{e0}}$, the rest mass energy of the positron ${E_{p0}}$ and the total kinetic energy of the electron-positron pair $K.E$.
i.e., ${E_a} = {E_{e0}} + {E_{p0}} + K.E$
Hence, the energy of the gamma-ray photon is given by, ${E_\gamma } = {E_{e0}} + {E_{p0}} + K.E$ ------- (1)
Substituting values for ${E_{e0}} = {E_{p0}} = 0.5{\text{MeV}}$ and $K.E = 0.78{\text{MeV}}$ in equation (1) we get, ${E_\gamma } = 0.5 + 0.5 + 0.78 = 1.78{\text{MeV}}$
Thus the energy of the gamma-ray photon is ${E_\gamma } = 1.78{\text{MeV}}$
So, the correct option is B.
Note: Positron is the antiparticle of the electron and is also known as antielectron. It has the same spin and same mass as that of the electron but with a charge $ + 1e$. So, it will have the same rest mass energy as that of the electron. The energy of the gamma-ray photon is used to create the electron-positron pair and to provide them with kinetic energy.
Complete step by step answer:
Step 1: List the parameters known from the question.
The creation of the electron-positron pair can be expressed as a reaction equation.
${\text{gamma - ray photon}} \to e + {e^ + } + K.E$
The rest mass energy of the electron is ${E_{e0}} = 0.5{\text{MeV}}$.
The total kinetic energy of the electron-positron pair is $K.E = 0.78{\text{MeV}}$.
Step 2: Find the energy of the gamma-ray photon using the energy conservation theorem.
According to the energy conservation theorem, the energy before creation must be equal to the energy after creation.
i.e., ${E_b} = {E_a}$
The energy before creation is the energy of the gamma-ray photon.
i.e., ${E_b} = {E_\gamma }$
The energy after creation is the sum of the rest mass energy of the electron ${E_{e0}}$, the rest mass energy of the positron ${E_{p0}}$ and the total kinetic energy of the electron-positron pair $K.E$.
i.e., ${E_a} = {E_{e0}} + {E_{p0}} + K.E$
Hence, the energy of the gamma-ray photon is given by, ${E_\gamma } = {E_{e0}} + {E_{p0}} + K.E$ ------- (1)
Substituting values for ${E_{e0}} = {E_{p0}} = 0.5{\text{MeV}}$ and $K.E = 0.78{\text{MeV}}$ in equation (1) we get, ${E_\gamma } = 0.5 + 0.5 + 0.78 = 1.78{\text{MeV}}$
Thus the energy of the gamma-ray photon is ${E_\gamma } = 1.78{\text{MeV}}$
So, the correct option is B.
Note: Positron is the antiparticle of the electron and is also known as antielectron. It has the same spin and same mass as that of the electron but with a charge $ + 1e$. So, it will have the same rest mass energy as that of the electron. The energy of the gamma-ray photon is used to create the electron-positron pair and to provide them with kinetic energy.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Wheatstone Bridge for JEE Main Physics 2025

Elastic Collisions in One Dimension - JEE Important Topic

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

AB is a long wire carrying a current I1 and PQRS is class 12 physics JEE_Main

Other Pages
Diffraction of Light - Young’s Single Slit Experiment

Write the value of charge in coulombs on the nucleus class 12 physics JEE_Main

CBSE Class 12 English Core Syllabus 2024-25 - Revised PDF Download

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF
