
A magnet is cut in three equal parts by cutting it perpendicular to its length. The time period of the original magnet is ${T_0}$ in a uniform magnetic field $B$. Then, the time period of each part in the same magnetic field is
A. $\dfrac{{{T_0}}}{2}$
B. $\dfrac{{{T_0}}}{3}$
C. $\dfrac{{{T_0}}}{4}$
D. None of these
Answer
133.5k+ views
Hint First establish the magnetic moments and the moment of inertia of each of the magnet pieces cut from the original piece. Then substitute these values in the equation for the time period of a magnet.
Formula used
${T_0} = 2\pi \sqrt {\dfrac{I}{{MB}}} $ where $I$ is the moment of inertia of the magnet and $M$ is its magnetic moment, $B$is the magnetic field and ${T_0}$is the time period of the magnet.
Complete step by step answer
For the original magnet, the time period is given by the formula,
${T_0} = 2\pi \sqrt {\dfrac{I}{{MB}}} $ where $I$ is the moment of inertia of the magnet and $M$ is its magnetic moment.
Now when the magnet is cut into three equal parts, the magnetic moments of each of the parts become one-third of its original value $M$ such that $M' = \dfrac{M}{3}$ where $M'$is the magnetic moment of each of the parts.
Now moment of inertia is essentially defined as a quantity expressing a body’s tendency to resist angular acceleration.
Moment of inertia of the magnet about an axis perpendicular to its length through its one end is given as $\dfrac{{m{l^2}}}{3}$ where $m$is its mass and $l$is its length.
Now, when the magnet is cut into three equal parts, mass of each part becomes $\dfrac{m}{3}$ and length of each part becomes $\dfrac{l}{3}$
So, moment of inertia of each of such part is $I' = \dfrac{m}{3}\dfrac{{{{\left( {\dfrac{l}{3}} \right)}^2}}}{3} = \dfrac{1}{{27}}\dfrac{{m{l^2}}}{3} = \dfrac{I}{{27}}$
So, the new time period of each of the pieces is
$\begin{gathered}
T = 2\pi \sqrt {\dfrac{{I'}}{{M'B}}} = 2\pi \sqrt {\dfrac{3}{{27}}\dfrac{I}{{MB}}} \\
\Rightarrow T = \sqrt {\dfrac{1}{9}} 2\pi \sqrt {\dfrac{I}{{MB}}} = \dfrac{{{T_0}}}{3} \\
\end{gathered} $
Therefore, the time period of each of the magnetic pieces is $\dfrac{{{T_0}}}{3}$
So, the correct answer is B.
Note Magnetic lines of force are always closed as magnetic monopoles do not exist. Which means that a magnet will always have a north pole and a south pole no matter how many times it is cut into smaller pieces.
Formula used
${T_0} = 2\pi \sqrt {\dfrac{I}{{MB}}} $ where $I$ is the moment of inertia of the magnet and $M$ is its magnetic moment, $B$is the magnetic field and ${T_0}$is the time period of the magnet.
Complete step by step answer
For the original magnet, the time period is given by the formula,
${T_0} = 2\pi \sqrt {\dfrac{I}{{MB}}} $ where $I$ is the moment of inertia of the magnet and $M$ is its magnetic moment.
Now when the magnet is cut into three equal parts, the magnetic moments of each of the parts become one-third of its original value $M$ such that $M' = \dfrac{M}{3}$ where $M'$is the magnetic moment of each of the parts.
Now moment of inertia is essentially defined as a quantity expressing a body’s tendency to resist angular acceleration.
Moment of inertia of the magnet about an axis perpendicular to its length through its one end is given as $\dfrac{{m{l^2}}}{3}$ where $m$is its mass and $l$is its length.
Now, when the magnet is cut into three equal parts, mass of each part becomes $\dfrac{m}{3}$ and length of each part becomes $\dfrac{l}{3}$
So, moment of inertia of each of such part is $I' = \dfrac{m}{3}\dfrac{{{{\left( {\dfrac{l}{3}} \right)}^2}}}{3} = \dfrac{1}{{27}}\dfrac{{m{l^2}}}{3} = \dfrac{I}{{27}}$
So, the new time period of each of the pieces is
$\begin{gathered}
T = 2\pi \sqrt {\dfrac{{I'}}{{M'B}}} = 2\pi \sqrt {\dfrac{3}{{27}}\dfrac{I}{{MB}}} \\
\Rightarrow T = \sqrt {\dfrac{1}{9}} 2\pi \sqrt {\dfrac{I}{{MB}}} = \dfrac{{{T_0}}}{3} \\
\end{gathered} $
Therefore, the time period of each of the magnetic pieces is $\dfrac{{{T_0}}}{3}$
So, the correct answer is B.
Note Magnetic lines of force are always closed as magnetic monopoles do not exist. Which means that a magnet will always have a north pole and a south pole no matter how many times it is cut into smaller pieces.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
