
A positive point charge is released from rest at a distance ${r_0}$ from a positive line charge with uniform density. The speed $v$ of the point charge, as a function of instantaneous distance $r$ from line charge, is proportional to
A. $v \propto {e^{ + r/{r_0}}}$
B. $v \propto \ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
C. $v \propto \dfrac{r}{{{r_0}}}$
D. $v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Answer
232.8k+ views
Hint: You can apply conservation of energy in this system as there is no external force acting on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
The electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
Complete step by step answer From the conditions given in the question it is clear that there is no external force acting on the system. So, we can apply conservation of energy on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
Now, as the particle moves from ${r_0}$ to $r$ it must have done some work. And this work done will be the difference in the initial potential energy and final potential energy.
We know that the electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
So, the work done will be $W = - dV$
Now, the work done can be calculated after substituting the limits of integration as
$W = \int\limits_{{r_0}}^r {\dfrac{\lambda }{{2\pi {\varepsilon _0}r}}} dr = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\int\limits_{{r_0}}^r {\dfrac{{dr}}{r}} $
On simplifying the integration we have
$W = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
Now, we apply the conservation of energy and equate this work done with the kinetic energy of the point charge as
$\dfrac{1}{2}m{v^2} = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
So ignoring the constants we have
$v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Hence, option D is correct.
Note: The conservation of energy is basically a law which states that the energy is neither created nor destroyed although it can be converted into different forms. If a system is isolated from the surrounding i.e. there is no external force acting on the system, then the energy is conserved.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
The electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
Complete step by step answer From the conditions given in the question it is clear that there is no external force acting on the system. So, we can apply conservation of energy on the system.
When a point charge of mass $m$ is moving with some velocity $v$ , it possesses a kinetic energy which is given by $KE = \dfrac{1}{2}m{v^2}$ .
Now, as the particle moves from ${r_0}$ to $r$ it must have done some work. And this work done will be the difference in the initial potential energy and final potential energy.
We know that the electric field due to a line of charge at a distance $r$ is given by $E = \dfrac{\lambda }{{2\pi {\varepsilon _0}r}}$ where $\lambda $ is the linear charge density of the line of charge.
The potential energy at a point due to a point charge is the product of charge and electric potential at that point and relation between the potential and electric field is given by $dV = - \int {\vec E \cdot d\vec r} $ where $dV$ is the change in potential.
So, the work done will be $W = - dV$
Now, the work done can be calculated after substituting the limits of integration as
$W = \int\limits_{{r_0}}^r {\dfrac{\lambda }{{2\pi {\varepsilon _0}r}}} dr = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\int\limits_{{r_0}}^r {\dfrac{{dr}}{r}} $
On simplifying the integration we have
$W = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
Now, we apply the conservation of energy and equate this work done with the kinetic energy of the point charge as
$\dfrac{1}{2}m{v^2} = \dfrac{\lambda }{{2\pi {\varepsilon _0}}}\ell n\left( {\dfrac{r}{{{r_0}}}} \right)$
So ignoring the constants we have
$v \propto \sqrt {\ell n\left( {\dfrac{r}{{{r_0}}}} \right)} $
Hence, option D is correct.
Note: The conservation of energy is basically a law which states that the energy is neither created nor destroyed although it can be converted into different forms. If a system is isolated from the surrounding i.e. there is no external force acting on the system, then the energy is conserved.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

