
A prism of refractive index $\sqrt 2 $has a refracting angle of 60$^\circ $. At what angle must a ray incident on it so that it suffers minimum deviation?
(A) 30$^\circ $
(B) 45$^\circ $
(C) 60$^\circ $
(D) 75$^\circ $
Answer
133.5k+ views
Hint:The angle of incidence is equal to the angle of emergence for minimum deviation. For a prism, the refractive angle is given by $\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ where A is the angle of prism and ${\delta _m}$ is the angle of minimum deviation.
Complete step-by-step solution
The refractive index of the prism is given as $\mu = \sqrt 2 $and the refracting angle of the prism is 60$^\circ $, which is also the angle of the prism which is denoted as A.
For a prism, the sum of angle of incidence and the angle of emergence is equal to the sum of angle of prism and angle of minimum deviation.
i + e = A + ${\delta _m}$
For the case of minimum deviation, the angle of incidence is the same as angle of emergence, i = e, therefore,
i = $\dfrac{{A + {\delta _m}}}{2}$ …equation (1)
Now that we have obtained the relation between angle of incidence and angle of prism and angle of minimum deviation, we can consider the relation of the refractive index to further solve the problem.
$\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ …equation (2)
We now substitute equation (1) in equation (2) and substitute the values of refractive index as well as angle of prism. We obtain,
$\sqrt 2 = \dfrac{{\sin \left( i \right)}}{{\sin \left( {\dfrac{{60^\circ }}{2}} \right)}}$
On simplifying, we get,
sin (i) = $\sqrt 2 \times \sin \left( {30^\circ } \right)$
The value of sin(30$^\circ $) is $\dfrac{1}{2}$. Therefore, the value of sin (i) becomes,
sin (i) = $\dfrac{1}{{\sqrt 2 }}$
Since sin (i) = $\dfrac{1}{{\sqrt 2 }}$, this means that i = 45$^\circ $
Hence, the angle of incidence for minimum deviation in the given prism is 45$^\circ $.
Therefore, option B is the correct answer.
Note: The equation for the refractive index of the prism and the equivalence relation between the sum of angle of incidence and the angle of emergence and the sum of angle of prism and the angle of minimum deviation are very important. In this question, if the angle of minimum deviation is given, then we do not need to use the relation for the refractive index.
Complete step-by-step solution
The refractive index of the prism is given as $\mu = \sqrt 2 $and the refracting angle of the prism is 60$^\circ $, which is also the angle of the prism which is denoted as A.
For a prism, the sum of angle of incidence and the angle of emergence is equal to the sum of angle of prism and angle of minimum deviation.
i + e = A + ${\delta _m}$
For the case of minimum deviation, the angle of incidence is the same as angle of emergence, i = e, therefore,
i = $\dfrac{{A + {\delta _m}}}{2}$ …equation (1)
Now that we have obtained the relation between angle of incidence and angle of prism and angle of minimum deviation, we can consider the relation of the refractive index to further solve the problem.
$\mu = \dfrac{{\sin \left( {\dfrac{{A + {\delta _m}}}{2}} \right)}}{{\sin \left( {\dfrac{A}{2}} \right)}}$ …equation (2)
We now substitute equation (1) in equation (2) and substitute the values of refractive index as well as angle of prism. We obtain,
$\sqrt 2 = \dfrac{{\sin \left( i \right)}}{{\sin \left( {\dfrac{{60^\circ }}{2}} \right)}}$
On simplifying, we get,
sin (i) = $\sqrt 2 \times \sin \left( {30^\circ } \right)$
The value of sin(30$^\circ $) is $\dfrac{1}{2}$. Therefore, the value of sin (i) becomes,
sin (i) = $\dfrac{1}{{\sqrt 2 }}$
Since sin (i) = $\dfrac{1}{{\sqrt 2 }}$, this means that i = 45$^\circ $
Hence, the angle of incidence for minimum deviation in the given prism is 45$^\circ $.
Therefore, option B is the correct answer.
Note: The equation for the refractive index of the prism and the equivalence relation between the sum of angle of incidence and the angle of emergence and the sum of angle of prism and the angle of minimum deviation are very important. In this question, if the angle of minimum deviation is given, then we do not need to use the relation for the refractive index.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
