Answer
Verified
108.9k+ views
Hint: The lens power is defined as the reciprocal of the focal length. The power of the lens is measured in dioptres (D). There are positive focal lengths of converging (convex) lenses, so they also have positive power values.
Formula used: We will be using the following formula,
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
\[v\] is the Image distance
\[u\] is the Object Distance
\[f\] is the Focal Length
Complete Step-by-Step Solution:
A lens's power is the capacity to converge or diverge the light ray that falls on it. Lens power is characterized as the reciprocal focal length of the lens. A small focal length lens has a large converging or diverging power of a parallel beam of light.
On the ${50^{{\text{th }}}}$ birthday, he reads the card at a distance $25\;{\text{cm}}$ using a glass of $ + 2.5{\text{D}}$. Ten years later, his near point must have changed.
So after ten years,
$u = - 50\;{\text{cm}},f = \dfrac{1}{{2.5{\text{D}}}} = 0.4\;{\text{m}} = 40\;{\text{cm,}}v = $ near point
Now, $\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}\quad $
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{u} + \dfrac{1}{f}$
Hence we can write,
$ \Rightarrow \dfrac{1}{{ - 50}} + \dfrac{1}{{40}} = \dfrac{1}{{200}}$
So, near point $ = {\text{v}} = 200\;{\text{cm}}$
To read the farewell letter at a distance of $25\;{\text{cm}}$,
$U = - 25\;{\text{cm}}$
For lens formula,
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
Substituting the values we get,
$ \Rightarrow \dfrac{1}{f} = \dfrac{1}{{200}} - \dfrac{{ - 1}}{{ - 25}}$
$ \Rightarrow \dfrac{1}{f} = \dfrac{1}{{200}} + \dfrac{1}{{25}} = \dfrac{9}{{200}}$
On calculating we get,
$ \Rightarrow f = \dfrac{{200}}{9}\;{\text{cm}}$
$ \Rightarrow f = \dfrac{2}{9}\;{\text{m}}$
$ \Rightarrow $ Power of the lens $ = \dfrac{1}{f} = \dfrac{9}{2} = 4.5{\text{D}}$
$\therefore $ He has to use a lens of power $ + 4.5{\text{D}}$.
Note:
The power of a lens combination would be the algebraic sum of the individual lens powers. There are negative focal lengths for diverging (concave) lenses, so they have negative power values as well. The lens power is specified as \[P = \dfrac{1}{F}\] where the focal length is \[F\]. This is also referred to as the dioptre.
Formula used: We will be using the following formula,
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
\[v\] is the Image distance
\[u\] is the Object Distance
\[f\] is the Focal Length
Complete Step-by-Step Solution:
A lens's power is the capacity to converge or diverge the light ray that falls on it. Lens power is characterized as the reciprocal focal length of the lens. A small focal length lens has a large converging or diverging power of a parallel beam of light.
On the ${50^{{\text{th }}}}$ birthday, he reads the card at a distance $25\;{\text{cm}}$ using a glass of $ + 2.5{\text{D}}$. Ten years later, his near point must have changed.
So after ten years,
$u = - 50\;{\text{cm}},f = \dfrac{1}{{2.5{\text{D}}}} = 0.4\;{\text{m}} = 40\;{\text{cm,}}v = $ near point
Now, $\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}\quad $
$ \Rightarrow \dfrac{1}{v} = \dfrac{1}{u} + \dfrac{1}{f}$
Hence we can write,
$ \Rightarrow \dfrac{1}{{ - 50}} + \dfrac{1}{{40}} = \dfrac{1}{{200}}$
So, near point $ = {\text{v}} = 200\;{\text{cm}}$
To read the farewell letter at a distance of $25\;{\text{cm}}$,
$U = - 25\;{\text{cm}}$
For lens formula,
$\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}$
Substituting the values we get,
$ \Rightarrow \dfrac{1}{f} = \dfrac{1}{{200}} - \dfrac{{ - 1}}{{ - 25}}$
$ \Rightarrow \dfrac{1}{f} = \dfrac{1}{{200}} + \dfrac{1}{{25}} = \dfrac{9}{{200}}$
On calculating we get,
$ \Rightarrow f = \dfrac{{200}}{9}\;{\text{cm}}$
$ \Rightarrow f = \dfrac{2}{9}\;{\text{m}}$
$ \Rightarrow $ Power of the lens $ = \dfrac{1}{f} = \dfrac{9}{2} = 4.5{\text{D}}$
$\therefore $ He has to use a lens of power $ + 4.5{\text{D}}$.
Note:
The power of a lens combination would be the algebraic sum of the individual lens powers. There are negative focal lengths for diverging (concave) lenses, so they have negative power values as well. The lens power is specified as \[P = \dfrac{1}{F}\] where the focal length is \[F\]. This is also referred to as the dioptre.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main