
A proton carrying $1{\text{MeV}}$ kinetic energy is moving in a circular path of radius $R$ in uniform magnetic field. What should be the energy of an $\alpha $-particle to describe a circular of the same radius in the same field?
(A) $1{\text{MeV}}$
(B) ${\text{0}}{\text{.5MeV}}$
(C) ${\text{4MeV}}$
(D) ${\text{2MeV}}$
Answer
133.8k+ views
Hint: To solve this question, we need to use the formula for the radius of the circular path described by a charged particle when it enters a magnetic field. From there we can find out its kinetic energy. Then substituting the values for the proton and the alpha particle, we will get the relation between their kinetic energies.
Formula used: The formula used for solving this question is given by
$r = \dfrac{{mv}}{{qB}}$, here $r$ is the radius of the circular path followed by a charged particle of mass $m$ and of charge $q$ when it enters in a magnetic field of $B$ with a velocity of $v$.
Complete step-by-step solution:
Let ${B_0}$ be the magnitude of the uniform magnetic field given in this question.
We know that the radius of the circular path followed by a charged particle when it enters in a magnetic field is given by
$r = \dfrac{{mv}}{{qB}}$
$ \Rightarrow mv = qBr$
Taking square both sides, we have
${m^2}{v^2} = {q^2}{B^2}{r^2}$
Dividing both sides by $2m$
$\dfrac{{{m^2}{v^2}}}{{2m}} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$
$\dfrac{1}{2}m{v^2} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$
We know that the kinetic energy is $K = \dfrac{1}{2}m{v^2}$. So we have
$K = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$................. (1)
According to our assumption, $B = {B_0}$. Also, according to the question, when a proton enters the uniform magnetic field, it describes a circular path of radius $R$. Let ${K_p}$ be its kinetic energy. Also we know that for a proton, the charge is $e$. Therefore substituting $B = {B_0}$ $K = {K_p}$, $r = R$ and $q = e$ in (1) we get
${K_1} = \dfrac{{{e^2}{B_0}^2{R^2}}}{{2{m_p}}}$ ………….(2)
Here we have assumed the mass of a proton to be ${m_p}$.
Now, according to the question, an $\alpha $-particle describes a circular of the same radius in the same field. Let ${K_2}$ be the kinetic energy of the α-particle. That is we have $r = R$, and $B = {B_0}$ in this case. Also we know that the $\alpha $-particle is similar to the helium nucleus, whose charge is twice that of the proton, and mass is four times of the proton, that is, $q = 2e$ and $m = 4{m_p}$. Substituting these values in (1) we get the kinetic energy of the $\alpha $-particle as
${K_2} = \dfrac{{{{\left( {2e} \right)}^2}{B_0}^2{R^2}}}{{2\left( {4{m_p}} \right)}}$
On simplifying, we get
${K_2} = \dfrac{{{e^2}{B_0}^2{R^2}}}{{2{m_p}}}$ ………….(3)
From (2) and (3)
${K_2} = {K_1}$
According to the question, the kinetic energy of the proton is ${K_1} = 1{\text{MeV}}$. Substituting this above, we get
${K_2} = 1{\text{MeV}}$
Thus, the kinetic energy of the $\alpha $-particle is also equal to $1{\text{MeV}}$.
Hence, the correct answer is option A.
Note: The circular path followed by the charged particle is due to the fact that the magnetic force always acts perpendicular to the velocity of the charged particle. So this force will provide the required centripetal force for the charge to move in a circular path.
Formula used: The formula used for solving this question is given by
$r = \dfrac{{mv}}{{qB}}$, here $r$ is the radius of the circular path followed by a charged particle of mass $m$ and of charge $q$ when it enters in a magnetic field of $B$ with a velocity of $v$.
Complete step-by-step solution:
Let ${B_0}$ be the magnitude of the uniform magnetic field given in this question.
We know that the radius of the circular path followed by a charged particle when it enters in a magnetic field is given by
$r = \dfrac{{mv}}{{qB}}$
$ \Rightarrow mv = qBr$
Taking square both sides, we have
${m^2}{v^2} = {q^2}{B^2}{r^2}$
Dividing both sides by $2m$
$\dfrac{{{m^2}{v^2}}}{{2m}} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$
$\dfrac{1}{2}m{v^2} = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$
We know that the kinetic energy is $K = \dfrac{1}{2}m{v^2}$. So we have
$K = \dfrac{{{q^2}{B^2}{r^2}}}{{2m}}$................. (1)
According to our assumption, $B = {B_0}$. Also, according to the question, when a proton enters the uniform magnetic field, it describes a circular path of radius $R$. Let ${K_p}$ be its kinetic energy. Also we know that for a proton, the charge is $e$. Therefore substituting $B = {B_0}$ $K = {K_p}$, $r = R$ and $q = e$ in (1) we get
${K_1} = \dfrac{{{e^2}{B_0}^2{R^2}}}{{2{m_p}}}$ ………….(2)
Here we have assumed the mass of a proton to be ${m_p}$.
Now, according to the question, an $\alpha $-particle describes a circular of the same radius in the same field. Let ${K_2}$ be the kinetic energy of the α-particle. That is we have $r = R$, and $B = {B_0}$ in this case. Also we know that the $\alpha $-particle is similar to the helium nucleus, whose charge is twice that of the proton, and mass is four times of the proton, that is, $q = 2e$ and $m = 4{m_p}$. Substituting these values in (1) we get the kinetic energy of the $\alpha $-particle as
${K_2} = \dfrac{{{{\left( {2e} \right)}^2}{B_0}^2{R^2}}}{{2\left( {4{m_p}} \right)}}$
On simplifying, we get
${K_2} = \dfrac{{{e^2}{B_0}^2{R^2}}}{{2{m_p}}}$ ………….(3)
From (2) and (3)
${K_2} = {K_1}$
According to the question, the kinetic energy of the proton is ${K_1} = 1{\text{MeV}}$. Substituting this above, we get
${K_2} = 1{\text{MeV}}$
Thus, the kinetic energy of the $\alpha $-particle is also equal to $1{\text{MeV}}$.
Hence, the correct answer is option A.
Note: The circular path followed by the charged particle is due to the fact that the magnetic force always acts perpendicular to the velocity of the charged particle. So this force will provide the required centripetal force for the charge to move in a circular path.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Diffraction of Light - Young’s Single Slit Experiment

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

Current Loop as Magnetic Dipole and Its Derivation for JEE
