
A radioactive isotope X with half life \[1.5 \times {10^9}\]years decays into a stable nucleus Y. A rock sample contains both elements X and Y in ratio 1:15. Find the age of the rock.
Answer
233.1k+ views
Hint: To answer this question we must understand the concept of half life. We should also know how the concentration of reactants and rate of reaction affects the half life. We can put in the values in the following equation to get our desired result.
\[{N_{(t)}} = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
Complete step by step solution:
During natural radioactive decay, not all atoms of an element are instantaneously changed to atoms of another element instead the decay process takes a long time. Sometimes the reaction never reaches completion. Here, it is important to note the concept of half life. It is the time in which the initial concentration is decayed and reduced to half.
From the question we can see that the half life is \[1.5 \times {10^9}\]
And X and Y are present in the ratio 1:15
Thus, we can write Y=15X
Let us assume Z to be the amount of radioactive isotope X initially present.
Therefore, X+Y=Z
$\Rightarrow $ X + 15X = Z
$\Rightarrow $ 16X = Z
Hence, \[\dfrac{Z}{X} = 16\]
We know that for second order reactions,
\[\lambda t = 2.303\log \dfrac{Z}{X}\]; where t is the age of the rock and lambda represents the decay constant which is the natural logarithmic value of 2 =0.693.
Substituting the values we have obtained so far,
\[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303\log 16\]
Or, \[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303 \times 1.204\]
Therefore,
\[t = 6 \times {10^9}years\]
Hence, the answer is \[6 \times {10^9}years\].
Note: Radioactive dating utilizes the concept of half life and radioactive decay. It is a process by which the approximate age of an object is determined through the use of certain radioactive nuclides.
\[{N_{(t)}} = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
Complete step by step solution:
During natural radioactive decay, not all atoms of an element are instantaneously changed to atoms of another element instead the decay process takes a long time. Sometimes the reaction never reaches completion. Here, it is important to note the concept of half life. It is the time in which the initial concentration is decayed and reduced to half.
From the question we can see that the half life is \[1.5 \times {10^9}\]
And X and Y are present in the ratio 1:15
Thus, we can write Y=15X
Let us assume Z to be the amount of radioactive isotope X initially present.
Therefore, X+Y=Z
$\Rightarrow $ X + 15X = Z
$\Rightarrow $ 16X = Z
Hence, \[\dfrac{Z}{X} = 16\]
We know that for second order reactions,
\[\lambda t = 2.303\log \dfrac{Z}{X}\]; where t is the age of the rock and lambda represents the decay constant which is the natural logarithmic value of 2 =0.693.
Substituting the values we have obtained so far,
\[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303\log 16\]
Or, \[\dfrac{{0.693}}{{1.5 \times {{10}^9}}}t = 2.303 \times 1.204\]
Therefore,
\[t = 6 \times {10^9}years\]
Hence, the answer is \[6 \times {10^9}years\].
Note: Radioactive dating utilizes the concept of half life and radioactive decay. It is a process by which the approximate age of an object is determined through the use of certain radioactive nuclides.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

