Answer
Verified
99.9k+ views
Hint:Radioactive decay is defined as the emission of energy in the form of ionizing radiation. It involves the spontaneous transformation of one element into another. This can happen only by changing the number of protons in the nucleus.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main