
A radioactive sample is undergoing \[\alpha \]decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . What is the average lifetime for the sample?
A. \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
B. \[\dfrac{{\ln \left( {{t_2} + {t_1}} \right)}}{2}\]
C. \[\dfrac{{\left( {{t_1} - {t_2}} \right)}}{{\ln 5}}\]
D. \[\dfrac{{\ln 5}}{{\left( {{t_2} - {t_1}} \right)}}\]
Answer
232.8k+ views
Hint:Radioactive decay is defined as the emission of energy in the form of ionizing radiation. It involves the spontaneous transformation of one element into another. This can happen only by changing the number of protons in the nucleus.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

