![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A radioactive sample is undergoing \[\alpha \]decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . What is the average lifetime for the sample?
A. \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
B. \[\dfrac{{\ln \left( {{t_2} + {t_1}} \right)}}{2}\]
C. \[\dfrac{{\left( {{t_1} - {t_2}} \right)}}{{\ln 5}}\]
D. \[\dfrac{{\ln 5}}{{\left( {{t_2} - {t_1}} \right)}}\]
Answer
124.8k+ views
Hint:Radioactive decay is defined as the emission of energy in the form of ionizing radiation. It involves the spontaneous transformation of one element into another. This can happen only by changing the number of protons in the nucleus.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Formula Used:
To find the activity of the radioactive sample the formula is,
\[A = {A_0}{e^{ - \lambda t}}\]
Where, \[{A_0}\] is initial activity, \[\lambda \] is decay constant and \[t\] is the half-life of a decaying substance.
Complete step by step solution:
Consider a radioactive sample which undergoes \[\alpha \] decay. At any time \[{t_1}\], its activity is A and at another time \[{t_2}\], the activity is \[\dfrac{A}{5}\] . We need to find the average lifetime for the sample. We have studied that the activity of the radio sample is,
\[A = {A_0}{e^{ - \lambda t}}\]
That is the activity decreases exponentially with time.
Here, the activity at time \[{t_1}\]is,
\[{A_1} = {A_0}{e^{ - \lambda {t_1}}}\]……….. (1)
Similarly, the activity at time \[{t_2}\]is,
\[{A_2} = {A_0}{e^{ - \lambda {t_2}}}\]………….. (2)
Here they have given, \[{A_1} = A\]and \[{A_2} = \dfrac{A}{5}\]
Then, the equation (1) and (2), we get,
\[A = {A_0}{e^{ - \lambda {t_1}}}\]……… (3)
\[\Rightarrow \dfrac{A}{5} = {A_0}{e^{ - \lambda {t_2}}}\]……….. (4)
Now, divide the equation (3) by (4), we get,
\[\dfrac{A}{{\dfrac{A}{5}}} = \dfrac{{{A_0}{e^{ - \lambda {t_1}}}}}{{{A_0}{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = \dfrac{{{e^{ - \lambda {t_1}}}}}{{{e^{ - \lambda {t_2}}}}}\]
\[\Rightarrow 5 = {e^{\lambda \left( {{t_2} - {t_1}} \right)}}\]
To eliminate the exponential term, we will take the natural logarithm on both sides, that is,
\[\lambda \left( {{t_2} - {t_1}} \right) = \ln 5\]
\[\Rightarrow \dfrac{1}{\lambda } = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
The mean or average lifetime is,
\[\tau = \dfrac{1}{\lambda }\]
\[\therefore \tau = \dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\]
Therefore, the average lifetime for the sample is \[\dfrac{{\left( {{t_2} - {t_1}} \right)}}{{\ln 5}}\].
Hence, Option A is the correct answer
Note:Remember that whenever there is an exponential term, in order to solve this, we need to take the natural logarithm on both sides, then we can resolve it easily.
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Atomic Structure and Chemical Bonding important Concepts and Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)